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( Notations and s

Answer Question 

1. Answer any five questions :

 a) Let X = . Define two norms 

|||),(
1

xyx 

1
.  and 

2
.  are equivalent.

 b) Show that the norm in a linear space 

over X. 

 c) If M is a subspace of a normed linear space 

also a subspace of 

 d) If x and y are two elements in a real Hilbert space and if 

then show that ( x

 e) Find the eigen values and eigen vectors of 

are reals. 

 f) Show that the orthogonal complement of any subset of an inner 

product space X is a closed linear subspace of 

 g) Let S be any bounded linear operator in a Hilbert space 

self-adjoint operator in 
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Question No. 1 and any four from the rest : 

questions : 

. Define two norms 
1

.  and 
2

.  on 

||y  and }|||,|{max),(
2

yxyx  . Show that

are equivalent.  

Show that the norm in a linear space X is a sub-linear functional 

is a subspace of a normed linear space X, then show that 

also a subspace of X. 

are two elements in a real Hilbert space and if x

0),  yxyx .  

Find the eigen values and eigen vectors of 










 ab

ba
, where 

Show that the orthogonal complement of any subset of an inner 

is a closed linear subspace of X. 

be any bounded linear operator in a Hilbert space H and 

adjoint operator in H. Show that TSS


 is self-adjoint. 

/PT/13/VIB 

[ Turn over 

/December, 2023 

Full Marks : 50 

Weightage of Marks : 80% 

accuracy and relevance in the answer. Marks will 

be deducted for incorrect spelling, untidy work and illegible handwriting. The 

2  5 = 10 

on X by 

. Show that 

linear functional  

 

, then show that M  is 

yx  , 

, where )0(, ba  

Show that the orthogonal complement of any subset of an inner 

and T be a 
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2. a) Show that space of all real polynomials of degree 

interval [ a, b ] is isomo

 b) Let }{
k

e be an orthonormal sequence in a Hilbert space 

define 





1

,(
k

exy

3. a) State and prove Riesz lemma in a normed linear space.

 b) Let y be a non-zero vector in a normed linear space 

there is a bounded linear functional 

and yyf )( . 

 c) Prove that the intersection of any number of co

linear space is convex.

4. a) State Hahn Banach theorem in a normed linear space. Show that for 

every )0(x in a normed linear space,

  





)(

sup
f

xf
x

 b) Show that a continuous linear operator 

only if ),( xAx is real for all 

5. a) State and prove Bessel's inequality.

 b) Given that X and 

YXT : is a surjective

open mapping.  

 c) Determine norm of the functional 

space . 

6. a) Prove that in a separable Hilbert space 

is countable. 

 b) Let HHT : be a continuous linear operator. If 

then show that T 

 c) Find the orthogonal complement of

   xlxW
ii

0:)(
2



 2 
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Show that space of all real polynomials of degree n in the c

interval [ a, b ] is isomorphic to the Euclidean space 
1n
. 

be an orthonormal sequence in a Hilbert space H. For 

)
kk

ee . Prove that 
k

eyx  )(  for k = 1, 2,...... .

State and prove Riesz lemma in a normed linear space. 

zero vector in a normed linear space X. Show that 

there is a bounded linear functional f defined on X such that 

 

Prove that the intersection of any number of convex sets in a normed 

ce is convex. 

State Hahn Banach theorem in a normed linear space. Show that for 

in a normed linear space, 





 
0and, fXf . 

Show that a continuous linear operator HHA : is self-adjoint if and 

is real for all Hx  , where H is a Hilbert space.

State and prove Bessel's inequality. 

and Y are Banach spaces over the same scalar field and 

is a surjective bounded linear operator, prove that 

Determine norm of the functional yxyxf ),(  on the Hilbert 

Prove that in a separable Hilbert space H, every orthonormal system 

be a continuous linear operator. If xTx ),(

 is a zero operator, given that H is a Hilbert space.

Find the orthogonal complement of 

ievenallfor0  in 
2

l . 

 

in the closed 

 

. For Hx  , 

..... . 5 + 5 

. Show that 

such that 1f  

vex sets in a normed 

4 + 4 + 2  

State Hahn Banach theorem in a normed linear space. Show that for 

adjoint if and 

is a Hilbert space. 5 + 5 

 

are Banach spaces over the same scalar field and 

rove that T is an 

on the Hilbert              

4 + 4 + 2 

every orthonormal system 

Hx0 , 

is a Hilbert space. 

4 + 4 + 2  
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7. a) If a normed linear space X  has the property that the series 
n

n

x


1

in 

X converges whenever 


1n
n

x , then prove that X is a Banach 

space. 

 b) Let ]1,0[
3
  denote the linear space of all real polynomials over [ 0, 1 ] 

with degree  3. Assume that ]1,0[]1,0[:
23
D be the differential 

operator. Show that D is linear and obtain a representative matrix           

for D. 

 c) Give an example of a linear metric space which is not a normed linear 

space. 4 + 4 + 2  

   


