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Answer Question 

1. Answer any five questions :

 a) Find the dimension of the vector space of all 

matrices over . 

 b) Let 














321

540

032

A

matrix with respect to the standard ordered basis of 

 c) If ,  be two orthogonal vectors in a Euclidean space 

that 
2 

 d) Use Cayley-Hamilton theorem to find 

 e) Show that the matrix 

 f) What are the irreducible factors of the minimal polynomial of the 

matrix 


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









00

00

20
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A

 g) Is the matrix 
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Question No. 1 and any four from the rest : 

questions : 

Find the dimension of the vector space of all n  n real symmetric 

 










3

5

0

. Find the linear transformation 

matrix with respect to the standard ordered basis of is A. 

be two orthogonal vectors in a Euclidean space V, then prove 
22  .  

Hamilton theorem to find 
50

A where 











10

11
A .

Show that the matrix 











13

01
A  is not diagonalizable. 

What are the irreducible factors of the minimal polynomial of the 











50

02

00

00

. 
















421

221

111

 positive definite ? 
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2  5 = 10 

real symmetric 

  

whose 

.  

, then prove 

. 

What are the irreducible factors of the minimal polynomial of the 
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2. a) Let V be a vector space over a field 

transformation. 

  (i) Define an eigen

  (ii) Define the eigen

   Define geometric multiplicity of an 

  (iii) Prove that any one

eigen space of 

 b) What is meant by a linear functional on a vector space ? Suppose 

a non-zero linear functional on an 

a field F. What is the nullity of 

3. a) Suppose V is a finite dimensional vector space over a field 

.dim nV   Let VT :

matrices of T are similar.

 b) Suppose A is an 

defined by XL
A

(

nullity of A
L is the same as the dimension of the solution space of 

0AX . Hence prove that if the number of variables is more than the 

number of equation

4. a) Extend { ( 2, 3, –

Euclidean space 

 b) Suppose 

),(),( xyyxT 

under  T are and { 0 }.

5. a) Prove that any orthonormal set in an 

independent. 

b) Suppose ,{
1

vB 

space V. Let T be a linear operator on 

of T with respect to 

nji  ,1 . 

c) Can there exist a non

that 
3

3
IA   ? Here 

2 
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be a vector space over a field F. Let VVT : be a linear 

Define an eigen value and an eigenvector of T. 

Define the eigen space of T associated with an eigen value of 

metric multiplicity of an eigen value of T. 

Prove that any one-dimensional T -invariant subspace of 

space of T. 

What is meant by a linear functional on a vector space ? Suppose 

zero linear functional on an n-dimensional vector space 

ld F. What is the nullity of f ? ( 2 + 2 + 3 ) + ( 1 + 2 )

is a finite dimensional vector space over a field 

VV  be a linear transformation. Prove that any two 

are similar. 

is an m  n matrix over a field F. Then 
A

L :

AXX ) , is a linear transformation. Prove that the 

is the same as the dimension of the solution space of 

. Hence prove that if the number of variables is more than the 

number of equations in 0AX  then it has a non-trivial solution.

– 1 ), ( 1, – 2, – 4 ) } to an orthogonal basis of the 

and then find an associated orthonormal basis.

is the linear transformation defined by 

) . Prove that the only subspaces of 

and { 0 }. 

Prove that any orthonormal set in an inner product space 

}...,,
n

v is an orthonormal basis of an inner

be a linear operator on V and 
nnij

aA  )(  be the matrix 

with respect to B. Prove that 
ijij

vTva , , for all 

Can there exist a non-identity 3  3 real symmetric matrix 

? Here 3
I is the 3  3 identity matrix. 

 

be a linear 

value of T. 

ubspace of V is an 

What is meant by a linear functional on a vector space ? Suppose f is 

dimensional vector space V over 

( 2 + 2 + 3 ) + ( 1 + 2 ) 

is a finite dimensional vector space over a field F with 

be a linear transformation. Prove that any two 

mn
FF : , 

, is a linear transformation. Prove that the 

is the same as the dimension of the solution space of 

. Hence prove that if the number of variables is more than the 

trivial solution. 5 + 5  

4 ) } to an orthogonal basis of the 

and then find an associated orthonormal basis. 

transformation defined by 

invariant 

5 + 5 

 is linearly 

n orthonormal basis of an inner product 

be the matrix 

, for all i, j with 

3 real symmetric matrix A such 

3 + 3 + 4 
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6. a) Show that the matrix 



















326

033

102

 is non-singular and express it as a 

product of elementary matrices. 

 b) Let m ( t ) be the minimal polynomial of an n  n matrix A. Prove that 

the characteristic polynomial of A divides 
n

tm ))(( . 5 + 5 

7. a) What is Sylvester law of inertia of real quadric forms ?  

 b) Diagonalize the matrix 



























020

212

022

A  orthogonally. 

 c) Show that the quadratic form  

  
133221

2
3

2
2

2
1321

24222),,( xxxxxxxxxxxxQ   is positive 

semi-definite. 2 + 5 + 3 

   

 
 
 
 
 
 
  


