PREFACE

In the curricular structure introduced by this University for students of Post-Graduate
degree programme, the opportunity to pursue Post-Graduate course in Subject introduced
by this University is equally available to all learners. Instead of being guided by any
presumption about ability level, it would perhaps stand to reason if receptivity of a learner
is judged in the course of the learning process. That would be entirely in keeping with the
objectives of open education which does not believe in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different subjects
are being prepared on the basis of a well laid-out syllabus. The course structure combines
the best elements in the approved syllabi of Central and State Universities in respective
subjects. It has been so designed as to be upgradable with the addition of new information
as well as results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the
preparation of these study materials. Co-operation in every form of experienced scholars
is indispensable for a work of this kind. We, therefore, owe an enormous debt of gratitude
to everyone whose tireless efforts went into the writing, editing and devising of proper lay-
out of the meterials. Practically speaking, their role amounts to an involvement in invisible
teaching. For, whoever makes use of these study materials would virtually derive the benefit
of learning under their collective care without each being seen by the other.

The more a learner would seriously pursue these study materials the easier it will
be for him or her to reach out to larger horizons of a subject. Care has also been taken to
make the language lucid and presentation attractive so that it may be rated as quality self-
learning materials. If anything remains still obscure or difficult to follow, arrangements
are there to come to terms with them through the counselling sessions regularly available
at the network of study centres set up by the University.

Needless to add, a great part of these efforts is still experimental—in fact, pioneering
in certain areas. Naturally, there is every possibility of some lapse or deficiency here and
there. However, these to admit of rectification and further improvement in due course. On
the whole, therefore, these study materials are expected to evoke wider appreciation the
more they receive serious attention of all concerned.

Professor (Dr.) Ranjan Chakrabarti
Vice-Chancellor
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Unit 1 Q Overview of Operations Research

Structure

1.1 Historical Development (;f Operations Research
1.2 Nature and Meaning of OR

1.3 Modelling in Operations Research

1.4 Classification of OR Models

1.5 Phases of OR _

1.6. General Methods for Deriving the Solution
1.7. Common Problems of OR

1.8. Salient Features of OR

1.9. ' OR in India

1.10 Questions

1.1 Historical Development of Operations Research

The science of Operations Research (OR) originated during the Second World
War. During that time the Military Commands of UK. and U.S.A. called upon scientists
from several disciplines and organized them into teams. The mission of these teams
was to formulate specific proposals and plans to aid the Military commands to arrive at
decisions on optimal utilization of scarce military resouices and efforts, and also to
implement the decisions effectively. The new approach of the scientific study of military
operations was termed as Operatnonal Research in U.K., while in U.S.A. it was called
Operations Research..

Following the end of the war, the success of the military teams attracted the
attention of industrial managers who were seeking solutions to their complex executive
type problems. During the year 1950, OR achieved recognition as a subject worthy of
academic study in the universities. Since then the subject has. been given more and
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more importance in the fields of Economics, Management, Public Administration,
Behavioral Sciences, Social Work, Mathematics, Commerce and Engineering.

1.2 Nature and Meaning of OR

OR has been defined in various ways. Below are some .deﬁnitions of OR which

have changed according to the development'of the subject.

1.

OR is a scientific method of providing executive departments with a quantitative
basis for decision regarding the operations under their control. [Morse and Kimbal
in 1946]

OR is a scientific method of providing executives with an analytical and objective

- basis for decisions. [P.M.S. Blackett in 1948]

‘The term ‘OR’ has hitherto-fore been used to connate various attempts to study

operations of war by scientific methods. From a more general point of view, OR
can be considered to be an attempt to study those operations of modern society

which involved organizations of men or of men and machines. [P.M. Morse in
1948] :

OR is the application of scientific methods, techniques and tools to problems
involving the operations of systems so as to provide these in control of the
operations with optimum solutions to the problem. [Churchman, Acoff, Arnoff
in 1957]

OR is the art of giving bad answers to problems to which otherwise worse answers
are given. [T.L. Saaty in 1958] '

OR is a management activity pursued in two complementary ways — one half by
the free and bold exercise of commonsense untrammeled by any routine, and other
half by the application of a repertoire of well established precreated methods and
technjques. [Jagjit Singh in 1968]

OR is the attack of modern methods on complex problems arising in the direction
and management to large sy'stcms of men, machines, materials, and money in
industry, business and defence. The distinctive approach is to develop a scientific
model of the system, incorporating measurements of factors such as chance and
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10.

11.

12.

13.

- 14,

15.

risk with which to predict and compare the outcomes of alternative decisions,
strategies or controls. The purpose is to help management to determine its policy

‘and actions scientifically. [Operations Research Quarterly in 1971]

Operations Research is the art of winning war without abtua.lly fighting 1t

OR is an applied decision theory. It uses any scientific, mathematical or logical
means- to attempt to cope with the problems that confront the executive when he
tries to achieve a through going rationality in dealing with his decision problems.
[Miller and Starr] :

OR is a scientific approach to problem solving for executive management. [H.M.
Wagner]

OR is an aid for the executive in making his decisions by providing him with the
needed quantitative information based on the scientific method of analysis. [C.
Kittel] '

OR is the systematic method oriented study of the basic structure, characteristics,
functions and relationships of an organization to provide the executive with a

‘sound, scientific and quantitative basis for decision making. [E.L. Arnoff and
M.J. Netzorg]

OR is the application of scientific methods to problems arising from operations
involving integrated systems of men, machines and materials. It normally utilizes
the knowledge and skill of an inter—disciialinary research team to provide the
managers of such systems with optimum operating solutions. [Fabrycky and
Torgersen] '

OR is an experimental and applied science devoted to observing, understanding
and predicting the behaviour of purposeful man-machine systems and OR workers
are actively engaged in applying this knowledge to practical problems in business,
government, and society. [OR Society of America]

OR isthe application of scientific method by inter-disciplinary teams to problems
involving the controls of organized (man-machine) systems so as to provide
solutions which best serve the purpose of the organization as a whole. [Ackoff
and Sasieni in 1968] |



16.  OR utilizes the planned approach (updated scientific method) and an inter-
disciplinary team in order to represent complex functional relationships as
mathematical models for purpose of providing a quantitative basis for decision
making and uncovering new problems for quantitative analysis. [Thieanf and
Klekamp in 1975]

There are three main reasons for which most of the definitions are not satisfactory —

(@)

(i)

(iii)

OR is not a science like any well-defined physical, biological, social
phenomena. Unlike scientists in well-known disciples of science, Operation
Researchers do not claim to know or have theories about operations. OR is
definitely not a scientific research into the control of operations. It is
essentially a collection of mathematical techniques and tools, which in
conjunction with a systematic approach are applied to solve practical decision
problems of an economic or engineering nature. Thus it is very difficult to
define OR precisely.

OR is inter-disciplinary in nature having application not only in military
affairs and business but also in medicine, engineering, physics and soon. It
makes use of experience and expertise of people from different disciplines
to develop new methods and procedures. Most definitions do not include
this important characteristic, i.e. inter-disciplinary approach of OR and hence
are not sati sfactory.

Most of the definitions have been offered at different times of development
of OR and hence tend to emphasize only one aspect of OR.

1.3 Modelling in Operations Research

A model in OR is simplified representation of an operation or a process in which
only the basic aspects or the most important features of a problem under investigation
are considered. A model should clarify the decision alternatives, their anticipated effects,
indicate the relevant data for analyzing the alternatives and lead to informative
conclusions. In order words, a model is an instrument used to arrive at a well-structured -
view of reality.
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1.4 Classification of OR Models

The word “model” has several meanings, all of which are relevant to OR. For
instance a ‘model’ may act as a substitute for representing reality, such as a small-scale
model aero plane; it may imply some sort of idealization, such as a model plan for
employment scheme of the unemployed; it may be a mathematical equation representing
the relationship between constants and variables, and so on. Basic OR models are as

follows :

(a)

(b

Iconic Model : Iconic models are identical representation of the system,

either in reduced or.enlarged form. For example, a photograph, the model
of an atom, a small-scale model is easy to conceive, very specific and
concrete. However, it cannot be easily used to determine or predict effects
of important changes in the actual system.

Analogue Models : In these models one set of properties is used to represent
another set of properties. For instance, graphs and maps in various colours
are analogue models where the different colours represent different
characteristics, like brown represents land, blue represents water, yellow
represents production, etc. Demand curves, frequency curves (in Statistics)
are also analogue models of the behaviour of events.

Andlogue models are less specific and less concrete than iconic models, but they
are easier to manipulate. They are generally more useful than the iconic models because
of their vast capacity to represent the characteristics of the real system.

(©)

Symbolic (Mathematical) Models : In these models a set of mathematical
symbols are used to represent the components of the real system. The
components are related together by means of a set of mathematical equations
which describe the behaviour (or properties) of the system. The solution of
the problem is then obtained by applying well-developed mathematical
techniques to the model.

A symbolic model is generally the easiest to manipulate experimentally,
and it is most general and abstract.

Other tyls;es of models which often arise are as follows :-
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(a) Combined analogue and mathematical models : Sometimes analogue
models are also expressed in terms of mathematical symbols. Such models
belong to both analogue and mathematical models. For example, a simulation
model (which is essentially a computer assisted experimentation on a
mathematical structure of a real time structure in order to study the system
under a set of assumptions) is of the analogue type but uses formulae. This
type of model is commonly used by managers to “simulate” decisions, by
studying the activity of the firm summarized in a scaled-down period.

(b) Function Models : Models may also be grouped according to the functions
performed. For example, a function may serve to acquaint the analyst with
such things as blueprint of layout, tables carrying data, a schedule indicating
a sequence of operations (like computer programming).

(c) Quantitative Models : These models are used to measure the observations.
A unit of measurement of length, volume, degree of temperature, etc. are
quantitative models. Other examples of quantitative models are :

(i)  transformation models which help to convert a measurement of one
scale to another (e.g. logarithmic tables, Centigrade vs. Fahrenheit
conversion scale), and

(i1) the test models which act as ‘standards’ against which measurements
are compared (e.g. a specified standard in production control, business
dealings, the quality of a medicine)..

(d) Qualitative models : Qualitative models are those that can be classified by
the subjective description e.g. “economic models” and “business models”,
which represent the gathering of all models pertaining to economic or
business problems, respectively, are qualitative models.

1.5 Phases of OR

In discussing the phases of OR we shall mainly consider the mathematical models.

The procedure for an OR study generally involves the following major phases :
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Phase I : Formulation of the problem

The first phase of OR requires formulation of the problem in an appropriate form.
This should clearly state the problem’s elements which include the controllable (decision)
variables, the uncontrollable parameters that may affect- the possible solutions, the
restrictions or constraints on the variables and the objectives for defining a good and
improved solution. '

Phase II : Construction of the model

The second phase of the investigation is concerned with reformulation of the
problem in a form convenient for analysis. It requires identification of both static and
dynamic structural elements and construction of mathematical formulae to explain the
interrelationship émong the elements. The mathematical model should include the
following three basic sets of elements :

(a) decision variables and parameters
(b) restrictions and constraints
(c) ijective function.

Phase III : Derivation of the solution

‘The third phase deals with mathematical calculations to derive the solution to the
model. Frequently, a solution of the model refers to a set of values of the decision
variables which optimizes one of the objectives and gives permissible levels of
performance on the other objectives.

Phase'IV : Updating the model

This phase involves checking of the model’s validity. A model will be said to be
valid if it can provide a reliable prediction of the system’s performance. A good
practitioner of OR realizes that his model must have a longer life and consequently he
updates the model time to time by taking into account the past, present and future
specifications of the problem. '

Phase V : Controlling the solution

This phase of the study establishes control over the solution by proper feedback
on variables which change significantly. The solution goes out of control as soon as one
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or more of the controlled variables change. As the conditions are constantly changing,
the same model and the same solution may not remain valid for a long time.

Phase VI : Implementing the findings

The final phase of the study deals with implementation of the results of the model.
This phase is primarily executed through the co-operation of the OR experts and those
who are responsible for marfaging and operating the system.

1.6 General Methods for Deriving the Solution

In general, there are three methods used for solving OR models. They are as

follows :

(@)

(ii)

(iii)

Analytical Method : Analytical method involves use of classical
mafhematics, such as differential calculus, finite differences, for finding
solution to the model. The kind of mathematics used depends on the nature
of the model.

Iterative Method : When the analytical method fails to derive the solution
the iterative method is used. Such.a procedure starts with a trial solution
and a set of rules for improving it. The trial solution is then replaced by an
improved solution and the process is repeated till either no further
improvement is possible or the cost of further computation is not justified.

Simulation Method : This method involves the use of probability and
sampling concepts to estimate the values of the parameters involved in the
model.

1.7 Common Problemé of OR

Some of the commonly accepted well defined problems of OR can be classified

as follows :

(a)

Allocation Problems : This involves the optimum allocation of available

resources SO as to maximize profit or minimize cost subject to prescribed
restrictions.
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(b)

(©)

(d

)

()

(g)

Competitive Problem : Here one has to determine the strategies to be

adopted by decision makers under competition or conflict.

Inventory Problem : Such a problem requires determination of optimum
(economic) order quantity and ordering (production) intervals so as to
maximize the profit or minimize the cost involved.

Waiting Line Problem : Here the problem is basically to organize service
facilities so as to minimize the total cost of providing service and obtaining
service, which are primarily related with the value of time spent by a
customer in the queue.

Sequencing Problem : A sequencing problem deals with scheduling of
jobs through machines in such a way so as to minimize the total elapsed
time.

Routing Problem : Such a problem requires finding the optimal route to
be taken in order to minimize the total cost or total time of traveling. One
such problem is the traveling salesman problem.

Replacement Problem : Replacement problems arise when the efficiency
of components of a system under consideration decrease with time resulting
in failure or break-down of the system. The problem is to décide when to
replace a component in order that the total cost involved is minimized.

The tools used to solve the above problems are referred to as technigues of OR.

1.8 Salient Features of OR

The salient features of OR are as follows :

(a)
(b)
()

(d)

It is an inter-disciplinary team approach for finding the optimum return.
It uses techniques of scientific research to arrive at the optimum solution.

It emphasizes on the over all approach to the system, i.e. all the aspects of
the problem under consideration.

It tries to optimize the total output so as to maximize the profit and minimize
the loss or cost.
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(e) Itcannot givé perfect answers to a problem, but can only improve the quality
of the solution.

1.9 OR in India

In India Operations Research came into picture in 1949 when an OR unit was set
up at the Regional Research Laboratory, Hyderabad. At the same time Prof. R.S. Verma
(Delhi University) set up an OR team in Defense Science Laboratory to solve the
problems of store purchase and planning. Prof. P.C. Mahalanobis established an OR
team in Indian Statistical Institute, Kolkata in 1953 for solving the problem of national
planning and survey. In 1957 the OR Society of India was formed and it became a
member of the International Federation of OR Societies in 1960. It started a journal
called OPSEARCH in 1963. Presently a number of OR journals are published in India
viz. Industrial Engineering and Management, Materials Management Journal of India,
Defence Science Journal, SCIMA, Journal of Engineering Production, etc.

The first important application of OR in India was made by Prof. P.C. Mahalanobis.
He used the OR techniques to formulate the second five-year plan. Planning Commission
employed OR methods for planning the optimum size of the Caravelle fleet of Indian
Airlines. Some of the industries, viz. Hindustan Lever Ltd., Union Carbide, TELCO, ‘
Hindustan Steel, Imperial Chemical Industries, Tata Iron and Steel Company, Sarabhai
Group, etc. have engaged OR teams. Kirloskar Company is using the assignment
technique of OR to maximize profit. '

As far as teaching of OR in India is concerned, the University of Delhi was the
first to introduce a complete M.Sc. course in OR in 1963. Simultaneously, Institute of
Management at Kolkata and Amedabad starting teaching OR in their MBA courses.
OR is now being taught in. almost all Institutes and Universities in various disciplines
~like Mathematics, Statistics, Commerce, Economics, Engineering, etc. Government
has also introduced OR as a subject for the IAS, CA, ICWA, etc. examinations.

1.10 Questions

1. Define Operations Research.
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Discuss the origin and development of Operations Research.

What is a model? Discuss the different types do models in Operations
" Research. ' '

What are the different phases of model building?

5.  Discuss the scope of Operations Research.
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Unit 2 Linear Programming

Structure

2.1 Introduction

2.2 Formulation of LPP

2.3 Some Important Definitions

2.4 Graphical Solution of LP Problem

2.5 Standard Form of LP Problem |
2.6. Conversion of a given LP Problem to the Standard Form
-2.7. Simplex Method

2.8. Development of the Simplex Method

2.9. The Computational Procedure

2.10 Artificial Variables

2.11 Duality in LP Problems

2.12 Duality Theorems

2.13 Sénsitivity Analysis

2.14 Questions '

2.1 Introduction

1In 1947, George Dantzig and his associates, while working in the U.S. Department
of Air Force, observed that a large number of military planning problems would be
formulated as maximizing/minimizing a linear form of profit/cost function, linear in a
number of variables which are restricted in yvalues satisfying a set of linear constraints.
(equations or inequalities). Such a formulation of an optimization (maximization/
minimization) problem is referred to as a Linear Programming Problem (LPP). The
term ‘Programming’ refers to the process of determining a particular programme or
course of action. Linear programming is one of the most important optimization
techniques developed in the field of OR. Generally, a LPP can be written as to optimize
(maximize) z = ¢, x, + ¢ X, + ...... ex .. (2.1)
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subject to
A X, F Qpy * o F X, S b,i=1,2,..,m

ax +ax,+..+a,x <b,i=m +1,..,m +m, . (2.2)
a.x, +ax,+..+a,x >b,i=m, + m, + 1,....m
x; 20 i=12 R «(2.3)

The problemis to find x, ..., x,, called Idecision variables, such that zis minimized.
(2.1) is called the objection function of the problem and the linear restrictions (2.2) are
’known as constraints. The (2.3) are called non-negativity restrictions.

2.2 Formulation of LPP

Given an optimization problem, the primary task is to formulate it in an appropriate
form. The outcomes of formulation of LP problems are explained through the following
examples : . |

Example 1. (Production Allocation Problem). A ﬁrm manufactures two type of
- products A and B and sells them at a profit of Rs. 2 on type A and Rs. 3 on ijpe B. Each
product is processed on two machines G and H. Type A requires one minute of processing
time on G and two minutes on H; type B requires one minute on G and one minute on H. -
The machine G is available for not more than 6 hour 40 minutes while machine H is
available for 10 hours during any working day.

Formulate the problem as a linear programming problem.

Formulation. Let x, be the number of products of type A and x, the number of
products of type B. -

After carefully understanding the problem the given information can be
systematically arranged in the form of the following table.

. Table 2.1
Machine - Time of products (minutes) Available time
_ Type A (x, units) | Type B (x, units) (minutes)
G 1 1 " " 400
H 2 1 600
Profit per unit ~ Rs.2 Rs.3 |
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Since the profit on type A is Rs. 2 per product, 2x, will be the profit on selling x,
units of type A. Similarly, 3x, will be the profit on selling x, units of type B. Therefore,
total profit on selling x, units of A and x, unit of B is given by

P =2x, + 3x, (Objective function)

Since machine G takes 1 minute time on type A and 1 minute time on type B, the
total number of minutes required on machine G is given by : x, + x,.

Similarly, the total number of minites required on machine H is given by 2x, +

But, machine G is not available for more than 6 hour 40 minutes (= 400 minutes).
Therefore, . :

X, + x, <400 (first constraint)
Also, the machine H is available for 10 hours only, therefore,
2x, +x, < 600 (second constraint)
Since it is not possible to produce negativel quantities,
x, 2 0 and x, > 0 (non-negative restrictions).
Hence allocation problem of the ﬁrm can be finally put in‘the form :

Find x, and x, such that the profit P = 2x, + 3x, is maximum, subject to the
conditions : :
X, +x2_400 2x, + x, < 600, Xy 20,x,20

Example 2. A company produces two types of Hats. Each hat of the first type
requires twice as much labour time as the second type. If all hats are of the second type
only, the company'can produce a total of 500 hats a day. The market limits daily sales
the first and second type to 150 and 250 hats. Assuming that type profits per hat are Rs.
8 for type A and Rs. 5 for type B. formulate the problem as a linear programming model
in order to determine the number of hats to be produced of each type so as to maximize
the profit.

Formulati_oh. Let the company produce x, hats Qf type A and x, hats of type B
each day. So the profit P after selling these two products is given by the linear function:
P = 8x, + 5x, (Objective function)

Since the company can produce at the most 500 hats in a day and A type of hats
20



require twice as much time as that of type B, production restriction is given by 2tx, +1x,
< 500¢, where ¢ is the labour time per unit of second type, i.e. :
- 2x, +x, <500

But there are limitations on the sale of hats, therefore further restncnons are :
x, 150, x, < 250.
Also since the company cannot produce negative quantities,
x,20,x,20.
Hence the problem can be written as :
Fmd x, and X, such that the profit
' P=8x, +5x, is max1mum

subject to the restrictions . -
2x, +x, <500, x, < 150, x, <250
x,20,x,20,

2 3 Some Important Definitions

1. Solution : Any vector x = (xl, sy 3Y OF vanables satlsfymg constraints
(2 2) is called a solution to the linear programming problem.

2. Feasible solution : Any solution to the linear programmmg problem is said
to bc feasible if it sa’u sfies the non- negatmty restrictions (2.3).

3.  Optimal solution : Any feas:ble solution to the linear programming problem
which optimizes the objective function (1) is called an optimal solution to the problem.

4. Unbounded solutit_in : A feasible solution of the linear programming
probfém. for which Z can be made infinitely large of small is called an unbounded
solution. -

2.4 Graphical Solution of LP Problem

A LP problem with only two decision variables can be easily solved by the
graphical method. In the graphical method we first-draw on graph, the straight lines
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defined by the equations corresponding to the inequality constraints. For example, if a
'constrain; is 2x — 3y < 5, we draw the straight line given by the equation 2x — 3y = 5.
Next, for each constraint the region of points satisfying the constraint is shaded. The
common shaded region contains points called feasible solution which simultaneously
satisfy. all the constraints. This 'region is called the feasible region or the region of
feasible solution. Choosing an initial value of z the straight line corresponding to the
objection function is drawn. This line is shifted parallel to itself over the feasible region
in the direction of decreasing (increasing) value of z till it just but moves -out of the
region. The value of z corresponding to this position of the straight line gives the minimum
(maximum) value of the objective function and all points on the portion of the line
included in the feasible region given the optimal solutions.

Examples :
(1)  Problem having unique solution :
Consider the problem
minimize z = 1.5x + 2.5x,
subjectto x; +3x,23
X Fx,22
X%, 20,
Graphlcal so!utlon The geometrical interpretation of the problem is given in

Figure 2.1.

The minimum value df zis attained at the point of intersection of the straight lines
x, + 3x, =3 and x; + x, = 2. This point is (1.5, 0:5) and min z = 3.5. Here we have a
- unique optlmal solution tq the problem.

X

2

2'\
- *\<—~_—.——— Feasible Region ————
e &
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. l - ~— ey
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(2) Problem having unbounded solution :
Consider the problem
maximize z = 3x, + 2x,
subjectto x, —x,<1
X +x,23
Xp5 X, 2 0.
Graphical solution : The region of feasible solution is the shaded area in Figure
2.2. Clearly in this case z can be made arbitrarily large and so the problem has no finite
maximum value of z. The optimal solution is in this case is unbounded.
(3) Problem with more than one optimal solution.
Consider the problem
~ maximize g =—x, +2x,
subjectto —x, +x,<1
—-x,.4+2x,54
Xigp, Moy 2.
Graphical solution : The graphical in‘tcrprctati on of the problem is given in Figure
23 :

'Here the strai ght line representing the objection function for z =4 coincides with
are edge of the feasible region. Thus, every point (x,, x,) lying on this edge (- x, + 2x,
=4), which goes to infinity on the right, gives z =4, which is the maximum value of z,

" and therefore every point on this edge is optimal solution.
@ " Problem with inconsistent system of constraints.
Consider the problem -
maximize z = 3x, — 2x,
subjectto x, +x,<1
2%, +2x,24

. “Xx 20
Graphical solution : The graphical representation of the problem is given in
Figure 2.4. The figure shows that there is no point (x,, x,) which satisfies both the

constraint simultaneously. Hence the problem has no solution as the constraints are
inconsistent. ' '
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2.5 Standard Form of LP Problem

The standard form is used to develop procedures for solving a given LP problem.

The standard form of an LP problem is as follows :.
- minimize = ¢ x; + CyX, + .. +éx
subject to aux, +ayx, +..+4q nx =b, i=12,.
x; 2 0,j=1, 2,.
In matrix notation the above can be written as
minimize z=c’x ... (2.4) |
subjectto Ax=b ' .. (2.5)
x20, .. (2.6)

where c=(c, ¢, ¢5...¢,)

a, 4ap ap,

a4y Gy a,
A=

aml amZ e anm

b= by...b,) x=(x xy . X))
¢ is called the cost vector, X is the decision vector, b is the requirement vector and A is
known as the coefficient matrix. In order that the constraint equations be linearly
indepeﬁdent it is assumed that rank (A) = m(< n). Also we take b, 20,i=1,2,...,m

2.6 Conversion of a given LP Problem to the Standard

Form

Step 1 : If the given LP problem is a maximization problem, i.e. the problem is to
maximize z C\X, + Cyxy + ... + ¢, x, then it is reduced to a minimization problem using
"~ the fact that for any function f(x)

max f{x) = — min{- flx)}
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~ For example, the problem
Maximize z = ¢ X, + C,x, + ... + € X,
is equivalent to '

minimize (- z) = -c¢x, — CyXy + .= C X,
i.e. minimizez =c"\x +c"x, + ... + X,
“where ==z

c"}:—cj, j=12,...,n
Step 2 : If a constraint (other than the non-negativity constraints) is an inequality
constraint, we convert it to an equality constraint by adding or subtracting a non-negative

variable from the left hand side as the situation may be
For example, consider the constraints
X +x,<2
2x, +4x,2 5.
We add a variable Xy =2 (x, + xé) > 0 to the Lh.s. of the first constraint to get
XXy +x3=2,
From the Lh.s. of the second constraint we subtract x 4 =2x, +4x,-520to getthe -
equality constraint
Zx + 4x2 -x,=35
Here x3 is called a slack variable and x, is called a surplus variable and both the
variables are non-negative.

Step 3 : If a decision variable x is unrestricted in sign (i.e. may be positive, negative
or zcro), itis replaced by two non-negative variables x” and x” through the relation x =
X +x",x, x ">0.

Note : It should be remembered that the coefficient of a slack or surplus variable in the
objective function is always zero so that the conversion of inequality constraints to
equations does not change the objective function.

Step 4 : If in any constraint the .h. s. is negatwe, the constraint is multlplled by (-
1) to make the rh.s. non-negative. For example, consider the ¢onstraint

Multxplymg b_v (- 1) the constraint becomes to
- 3x.l -2x, < 5.
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Addition of slack variable x,(= 0) gives the constraint as
3%, =2, 4+ x,=5. _
Example : Express the following LP problem in the standard form —
maximize z=  —x; +2x,— x3-
“ subject to 2x, +3x, +4x,2-4
- ' 3x, + 55, +2x, 27
x, 20, x, 2 0 unrestricted-in sign.
Solution : Proceeding as in the steps above we get the problem in the standard
form as follows :
minimize z* = x, - 2x, + (&', —1";)
subjectto —2x, —3x, —4(x’; - x",) +x, =4
3%, + 5xy + 20"y =) —x; =T
% 20, 20,2, 2047 ,20,x,20.
Here z*=—z, x, =x'; — x”;, and x, and x, are respectively the slack and surplus
variables.

2.7 Simplex Method

When the number of decision variables is more than 2 it is not possible to solve
the LP problem graphically. The simplex method provides.an algorithm for solving a
LP problem in such a case. For application of this method an LP problem has to be

reduced to the standard form.

To understand the simplex method the following definitions and theorems are
essential.

Definitions

1. Basic solution (B. s.) : A basic solution to the set of constraints (2.5) of the
LP problem in the standard form (2.4) — (2.6) is a solution obtaining by setting any (n
—m) variables among X|; Xy, ...y X, t0 Zero and solving for the remaining m variables,
provided the determinant of the coefficients of these m variables in (A) is non-zero.
These m variables are called basic variables and the remaining (n — m) variables, which
are set to zero, are called non-basic variables.
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Let B be an x m non-singular submatrix of A formed by the coefficients of m

variables denoted by the m x 1 vector x,. Then setting the remaining (1 — m) variables
' _ _ - (x

to zero, from Ax = b we get Bx, = b, so that xp=B~1b. Then, x = [ J] is a basic

solution. We often refer to x 5 a8 the basic solution. Under the assumption of rank (A) =
~ m, we get B as a basis matrix of A.

2. Basic féasible solution (B. f.s.) : A basic feasible solution is a basic solution
satisfying the non-negativity constraints (2.6). Basic feasible SO]l.ltIOl’IS may be of two
types—

(a) Non-degenerate b.f.s. : A non-degenerate basic feasible solution is a
basic feasible solution in which the basic variables are positive.

(b) Degenerate b.f.s. : A degenerate basic feasible solution is a basic
feasible solution with at least one basic variable zero.

3. Optimum B.fs. : A basic feasible solution is said to be optimum if it
minimizes the objective function (2.4).

1. Hyperplane : The set of points x in R” (n-dimensional real space) satisfying
€)X+ 0+ €,X, =2, 0r ¢'x =z for prescribed values of ¢, ¢,, ..., ¢, and z defines a
hyperplane. o '

2. Ahyperplane {xeR"| ¢’x = z} divides R" into three mutually exclusive sets,
viz. S - {xeR" | c’x <z} §, - {xeR"| c¢’x -z} and §; - {xeR" | ¢'x > z}

Open half spaces : The sets S, = {xeR" | ¢’x < z} and Sy = {xeR" | ¢'x > z} are
called open half spaces.

Closed half-spaces : The sets S, — {xeR" | ¢’x < z} and Ss—{ xeR’_‘ | ¢’x >z} are
called half-spaces. ' '

Convex sets : A set C'in R" is said to be a convex set if for any two distinct points
X1y Xy€ Cs every point x = Ju y+(1- JL)x(z), 0 <A <1, mustalso be in C.

Convex combination of pomts A convex combmanon of pomts X1y X2y = Xy
~ in R" is defined as a point
xX=A Xy + ?sz(z) + ..+ kzt(k),

k
where  0<A<ii=1,2,..k 2A=1.
i=1
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Convex hull : The convex hull of any given set of points § is the set of all convex
combinations of sets of points from S.

- Convex polyhedron : If a set S contains a finite number of points, the convex hull
of § is called a convex polyhedron.

Extreme points of a convex set : A point x is said to be an extreme point of a
convex set Cif it cannot be expressed as a convex combination of two distinct points in -
(54

Some important theorems

Theorem 1. A hyperplane in R" is a convex set.

Proof. Let § = {x€R" | ¢’x = z} be a hyperplane and also let x, and x, be any two
points on the hyperplane. Then,

¢’x;=zand c’x, =z
Therefore, for0 <A <1,
¢'Ihx, + (1 -A)x,] = ¢'Ox,) + [(1 = A)x,] = ¢/ (x) + (1 = A)c'x,
=Az+(1-AN)z=2z

Hence the point Ax; + (1 — A)x,, for 0 < A < 1 lies in the hyperplane.-So the
hyperplane is convex. _ ‘ ,

Theorem 2. The closed half space H, = {x | ¢’x 2z} and H, = {x | ¢’x < z} are
convex set.

Proof. Let x() and x? be any two points of H,. Therefore,
' ¢/xDA >z and ¢'X? > 2.

If0<A <1, then
&P + (1 = x@] = Ae'xD + (1 - A)x(2) > Kz + (1 - Nz = 2]
Hence xV), xPeH and 0 SA< 1= [AxD + (1 - A)x@)eH - So H| is convex.

Similarly, if x, x®eH,,0<1<1, then replacing the inequality sign ‘<’ in above,

it is true that
[xD + (1 - Ax@]eH,.

So H, is also convex.
Corollary. The open half spaces : {x | c’x> z} and {x | ¢’x < z} are convex sets.

Theorem 3. (2) The intersection of two convex sets is also a convex set.
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(b) Interaction of any finite number of convex sets is also a convex set.
Proof. (a) Let C, and C, be two convex sets and also let C=C/nNC,
To show that C is convex.
Let x®, xPeC and § = {x | x = 1D+ (1 =A@, 0 <A <1}

- Now XD, xXDeC = ¥, x®eC,  (C, being convex)
Also,  xD, xPeC=xD, xXPeC, (C, béihg convex)
Therefore, XD, x?eC= Sc C,and S C,= S C,NC,= S C.
Hence C is convex.

() LetC,C,, .., C,benconvex sets and C= C, N C,N, NC
Now, - xeC=xeC,foralli=1,2, .., "

n'

and - x,€C = x,€Cy foralli=1,2,..,n
Since C; is convex set for all i=1,2,..,n _
X, %,8C = Ax, + (1 - Mx,eC,, for aﬂ i=1,2,..,n, where OFS A<l
| 2+ (1-Ax,C (€N Gy, o N C, 0SAS,
That is, x,€C, xzeC "
=M +(1-Ax,cC,0<A<1,
Hence by definition C,, N C, n, ..., N C, is a convex set.

Corollary. If C, and C, are closed convex sets, then C,, 'Cz is also a closed convex
set. '

Example : Show. thatS=_ {(x)5 g, s x5) 1 2, =X, +x3 < 4,J|:l - 2x -2x -x3 <1}
is a convex set.
Solution : Obviously, S is the intersection of two half spaces, viz.
H, = {(x}, Xy, x3) : 2x, = x, -Hc3 <4}andH,= {(x,,xz,x3) X, =2x,+x,<1} .
Since H, and H, are convex, so § = H, N H, is also convex.

Example : Let A be an m x n matrix and b an m- vector, then show that {xeR" : A.x
< b} is a convex set. -

Solution : Letx = (X, Xy e X3), b= by, by, .., by)’and A= (au)mx i Then the set
§= {xeR" : Ax < b} can be represented by m-inequalities :
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a, X, +ax,t..ta,x < b1

Ay Xy +AyXy + ..+ 8y %, < b2

............................................

QX tax, . ta, X, < bm
Thus, the set S'is the intersection of m half spaces,
H = {(x;, %, x,): ayx, +ax, + .. +a,x,<b,i=1,2,..,m}
2 ne
Since each half space is convex, S = ﬂ H, is also convex.

i=1

Theorem 4. Given that S and T be two convex sets in R", then show that oS+ BT
is also convex-o, B. '

Proof. Let S  R" and T < R" be two convex sets; and o, BER.

Let X, Y be two points of a.S + B7.

Then X = aU, + BV, and Y = aU, + BV, where U, U,eS, and V;, V,eT.  ...(1)

For any scalar A, 0 <A < 1, we have '
AX+(1-ANY  =MoU, +BU,) + (1 - \(al, + BV,)

= oAU, + (1 =M)UY]+ BV, + (1 =NV, ] e
Since S is a convex set, U,, U,eS = AU, + (1 -A)U,eS, 0 A <1, s (3)
And similarly, V,, V,eT'=> AV, + (1 - WV,eT,0< A <1, .. (4)

Now from (1), (3) and (4) AX + (1 - A) YeoS + BT, 0 <A < 1.
Hence o + BT is a convex set.
Corollary. If s and T be two convex sets in R, then S + T and S — T are also
convex.
Theorem 5. The set of all convex combmations of a finite number of points > 7 N
. isa convex set. '

i=1 i=1

Proof. Let C = {xh; = ﬁ?ulxx,l?.(},ﬁll = l}

To show that C is a.convex set :
Let x’ and x” be in C, so that
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x'—EN (wherel,zo 2\ ‘1] and
| i=1 : i=1.

E A x ,(where A";20, E A= J
i=1 i=1
Now consider the vector: x =\ +(1-Ax",0<A <1

=) il’lxi +(1- ?L)%?L”xf

H

_Z(M'+(1 WA )x, = Zp,‘xl

where u; = AN, + (1 -MA,i=1,2, .., m
Since 0<A<1, A, <0,wehavep, 20V i-1,2,..,m Also,

m - m

A 2'1;.17& Z M+ (- 'A)?L” }=A ZJL’ +(1-2) Z?L” =1
Hence x is a convex combination of the points x|, X, ..., X, in Ci.e., xeC.
Fundamental theorem of linear programming
Consider the LP problem
minimize z = ¢'x
subject to Ax = b, x20.
Let S be the set of feasible solutions to the problem

" Theorem 6. S is a convex set.

Let X be two feasible solutions to the problem, then

Axyy=b, %, 20, Axg, = b, %, 2 0.

Consider x=Ax, + (1 -A)xp 0SA<L

As X)), X5, 2 0 and A=20,x20.

Also, Ax = u) +(1- A.)Ax(z}
=Ab+(1=-A)b=0b.

Hence x is a feasible solution to the problem, i.c. xeS.

Thus, S is a convex set. '

Theorem 7. Extreme points of S correspond to basnc feasible solutions.
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X

0

x 1 vector satisfying for some m X m submatrix Bof A, Bxg = b. If possible letx’be a
point of S, i.e. we can find two distinct points x,;, and x,,, in § such that -

X0 =Axyy + (1 = M)x,y, for some 0 <A< 1.

" | |t
Letx(1)= v andx(z)— vy

where u, and u, are m X 1 vectors .
Then

B . ;
Proof. Let x° = [ }be a basic feasible solution to the problem, where xzis am

xp=Au, + (1 -y, we(1)
0 =v, +(1 -, | (2
Since x,,, and x ,, are feasible solutions, u,, u, 20, v,, v, 20.
Hence, since 0 < A < 1, it follows from (2) that

vy =0,V =

U B Uy
Therefore, =0 and x2=|o

Since X0 and X2 satisfy Ax = b, we have Bu, = b, Bu, = b, so that,
uy, u, =B~ 'b.
But Bx, = b, which implies x, = B-'b.
Hence, u, = u2 = Xp.
Thus x,;, = ¥, = x°. This contradicts that x;,
Hence, x°is an extrcme point of S.
Theorem 8. If.S be a convex polyhedron, then at least one extreme point is an
optimal solution. : g

Proof. Let x ,,,

X2y

X gy s Xz DE the extreme points of S. Letx,,, 1 <im <k be such
that e '

min=c’x
1sik (m)

be a point in S, which is not an extreme pomt at w:th the objective functlon

—z* say.

Letx,

is minimized,
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1, l'I;JSI'l c’x{o} = Zg, SAY

Since x is not an extreme point and S is a convex polyhedron, x, can be expressed

as a convex combination of _the extreme pOlntS x{l), x(z}, iy x(k), 1.€.,
x= ?\;lxm + )sz{z) + ..+ lk'x(k)
k

where A, A,, ..., 2,20, E?\.l =il
i=1
Therefore,
Zo : =c x(o) .
— ! ’ ’
=\ Xy + Ayc Xy toons't Ac X
ZAMZE 2+ A
= '
Since z, is the minimum value of the objective function is S, we must have
rheg, '

This implies that there exists an extreme point at which the objective function is
minimum. | '

Theorem 9. If S be a convex polyhedron and the minimum value of the objective
function be attained at more than one extreme point of S, then the minimum value of the
objective function is attained at every point which is a convex combination of those
extreme points. |

Proof. Let X1y Xay -+ Xy be the extreme points of S and without loss of generality,
let the objective function assume its minimum value at x,,,, Xy = Xy T S k. This
means '

’ = =P - -
= minz*, say,
_ xeS .

Letx= ?lem + 7\-2"(2) + ..+ kx(r)

. = . 7 g - # . ,l ) . -

where A, Ay, ..., }r > 0,_5)\.‘. = 1, be a convex combination of x;), X, . X
Then,

e -

cx =c {A.ixm + A_'zx(zy + lnx(r)}
— ok ! ’
=AC X5+ A,c Koy He e Ac Xy
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Hence the theorem.

- Theorems 7 and 8 show that if the set of feasible solutions is a convex polyhedron,
then we can search for the optimal solution from among the basic feasible solutions.

This is the idea behind simplex method.

2.8 Development of the Simplex Method

Consider the LP problem in the standard from, i.e.,
Minimize z =c¢’x
subjectto Ax=b
x20
Let us write A - (a,, a,, ..., a,), where a, a,  vector, is the j-th column of A.
Without loss of generality, let E
B=(a,,a,, ..., a,) be a non-singular matrix. Since rank (A) = m, the columns of B
therefore from a basis of the column space of A so that every column of A can be
expressed as a linear combination of @, a,, ..., a,. B is c_:alled the basis matrix of A and
the columns of B are called basic vectors. Let us write
a;= yljbl + y:,Jb2 ot ywbm
or, a,=By,
or, y= B- laj,
where yi= (ylj Yoy ymj)',j =1, 2y M
We partition A and x as

. xB
A=@B|A)x=|

| where A\ =(a,, , 1» 0 @) %, = (X, o0 X, ) Xp = (X, 15 0 X))
The columns of A, are called non-basic vectors.
Then the constraints Ax = b give Bx + A x, = b.
Putting x, = 0 we get Bx, = b so that x; = B~ 'b. This is a b.f.s. to the problem.

b +y, .ty

i me, ifyl}. # 0, we can write

since a; =y "
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; 1
by=" 2_(&}% +—a,

k#i y‘! ylj

so that {0 — ' &y b.

' i 412 - b,,) forms a new basis matrix of A.

Accordjngly,

b B.xB E{xak%‘xsl]bk—"“@aj.

i Yij

Thus we get a new basic solution is X, having asits components the basic variables

Vi . .
Xpi—Xpi——Xg,,il=1,2,....mi#r
1
XBr

Yij

s L=F.

We shall now show that £, satisfies the non-negativity restrictions.
Case 1 : Suppose x, = 0. In this case % ‘s sill obviously be non-negative.

Case 2 : Suppose x,_> 0. In this case we must have y,;>0. To make %, non-
negative. Also, for the remaining ¥,; (i # r) we require that for each i # r, either y;=0or

’ xBI >

Yi er fc-ry,J >0

XBi X8
So, if we select the mdex rwith y, #0 in such a way that

i&:min ﬁ’y!’>0 g '
Yri Yi ;5

then the new set of basic variables %5’s will be non-negative, and hence the basic
solution X, is feasible. This can be always done.

and ~ for Yy < 0.

Remark : If we replace a basic vector b, from the basis matrix B = (b,, b,, ..., b,)
by a non-basic matrix a, then the new basis matrix is

B=(b.b,,....b,)
36
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where 53 =b,i=r

~

br = a],
and the new b.f.s. is
X3=B"p
g Yy ¥ .
where X5, = xgi——L X, i# 7T
: %

Xg. .

=28 =y
Yrj

are the new basic variables.

Theorem 10. Let x, be a b.f.s. to the LP problem (2.4)-(2.6). Let x, be another
b.f.s. obtained by introducing the non-basic vector a, in the basis for which z; - c; is
positive. Then X, is an improved b.f.s. the problem in the sense that
| €y Xyl 5¥y
Proof. Let ¢’ x, = z,,.
Let a, Ibe the non-basic vector admj_tted in the basis in place of Qr and z} -c;> 0.
If x, be the new b.f.s. then

” Yij g
xBi = Xpg; ——JxB,.,ntr
rj -
Xpi |
=i,£=r
Yij
And, ¢y =cpi#ETr
:cj,:':-r.

Then the value of the objective function corresponding to X is

m . "
7= _chixBi
=1
& Y X
4 Br .
= X cp| Xp = Xp [+C.
B rj Yrj

i#r
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since z;—¢;>0. _
Hence the new b.fs. X, gives an improved value of the objective function.
Corollary : If Z,—¢;= 0 for at least onéj for which V> 0,i=1,2,...,m, then
another b.f.s. is obtained which gives an unchanged value of the objective function.
Proof. It follows from theorem 10 that
Xpr
z =%y~ O =) —==.
) 0 J er‘
= ; £ _ 0 Xar 0
=2Zp since z; —¢; =0, = >0,
Yrj
Theorem 11. If for a b.f.s. to the LP problem (2.4)-(2.6) there exists at least one

J for which y,, < 0 for all i = 1, 2, ..., m, but z; — ¢; > 0, then there does not exist an
optimum solution to the problem, i.e., the problem has an unbounded solution.

Proof. Let x,; be a b.fs. to the problem corresponding to the basis matrix Bi.e.
Bxg = b) and having the value of objective function
m
2 =C'pkp= E;Carxaf
Now, we can write

b =Bxz+ &a, - Ea;, € being a scalar

I

= f_%(ng - &)’,})b‘ t gaJ '

If £ > 0 then g~ E_,yfj) = 0 since ¥; < 0. This shows that there exists a feasible
solution whose (m + 1) components may be strictly positive. The corresponding value
of the objective function is '

m
g = E Cpilxg; — &) + &
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n i )

= Elcmx&- - E"(;%i CiYi— Cj]

- Zo - a(zj - Cj)
But z,,-. ¢;>0. -

Z <z, for §>0.
Hence, 3 — —o a8 g._{oo.
This means that z can be made arbitrarily small. Hence the problem has an
unbounded solution.

- Remark 1. From the above discussion it follows as long as z; - ¢;> 0 and y;; > 0
for atleastone j; i=1, 2 ., m, one can get anew b.f.s. which 1mpmved the value of the
objective function. -

Remark 2.1f z;—¢; <0 for all j then the corresponding b.f.s. is optimal.
Proof. Suppose x, =B~ 'bis the b.f.s. and z,— c; <0 corresponding to all j = 1, 2,
., n. Consider any arbitrary feasnble solution x of Ax = b. Since x;20forallj=1,2,..,
n.

n

Z (g ¢y <0
or, ;5;1 z,xj < Z c
or, El ©pypx; = -,% %
or, .écg{éyg—xj]sjgcjxf (D)

Now, x, =B-p .
=B~ !(Ax)
=B~ a,, a .., a)x
=(B~'a,, B~ la,..,B~la)x
= (Y Yoo woos V)X
Xg '=§yﬁxj,i=_l,2,..,m
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Hence, from (1) we get
E .Cp Xp; < l_Elc 2
or, Zzy<z%
where z,,is the value of the objective function corresponding to b.f.s. xpand z* is

' the value of the objective function corresponding to an-arbitrary feasible solution of Ax
‘= b. Thus, z, is the minimum value of the objective function'

We are now in a position to write down the computanonal procedure of the simplex
method.

2.9 The Computational Procedure

The optimal solution to the LP problem in the standard from is obtained in the
following steps : o

Step 1 : Obtain an 1mtlal b.fs. to the problem in the form

B~'b.
Xp=
Step 2 : Compute z; - cj forj=1, 2, ..., n by using the relation
G GECpi TG

where y;=B"la;
Examine the sign of z;—¢;.
@) Ifallz;—c;<0,thebfs. x, is optimal.
(i) If Z;—¢;> 0 for at least one j, go to step 3.

Step 3 : If there is more than one j with Zj=¢;> 0, choose the most positive of
them, i.e., choose j = k, where
Z,— €, = maxiz;— -c;>0}
: k™ ISJ(u{ J I
(@) yg<Oforalli=1, 2,..,m
If a; = b,, then
y; =B~la,
=B-'p,
= e,, the unit vector with i-th element unity and all other elements
zero,
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since we have ¢z, =c; as b; = a;.
Then the problem.has an unbounded solution.

(i) Ify, >0 forsomei= 1,2, .., m, then the non-basic vector a, enters the
basis.

Step 4 : Find i = r such that

X; . lx
B = min{ 2.y, >0
yrk 1<izm yrk

Then b_ leaves the basis.

Step 5 : Compute the new b.f.s. £, with

Xy
. 1 21 0\x,| [10T67 [6
X n: = = =
B 4 3 0 1)\x| [01]12] [12
; %,
= L L I=F
_ yrk
Step 6 : Compute the new values of y,'s from the relation
A Yeidi .
Vi =Yy —y—ﬂ(-,: #Fr:
= ;yi-,i =
Vrk -

wherej=1,2,.

‘Step 7 : Go to step 2 and repeat the computational procedure until elther optlmal
solution is obtamed or there is an indication of unbounded solution.

‘Example : Usc the simplex method to solve the following LPP bt
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maximize z = 7x, + 5x,

subjectto x, +2x,<6
4x, +3x,<12
Xp, Xy 20,

"~ Solution : We first reduce the given problem to the standard form—
| maximize z* =-7x, — Sx,

subjectto X, +2x, +x;=6
4x +3x,+x,=12
Xyy Xoy X3, X, 20,

(Have x; and x, are the slack variables).
The set of equations can be written as

: x, :
121 0\x| [6
L4 30 J X =[12]

X4

or, Ax=b.

' 1 0
clearly rank (A) = 2 and since [O} and [1:| are two linearly independent

10
column vectors A, we can take B = |:0 1] as a non-singular basis matrix of A. The basic

variables are, therefore, x; and x, and an obvious basic feasible solution is
x; =B'b '

BEAS
- L}

Corresponding to these basic variables, the matrix
Y=B-!A, where Y = 0> ¥ --r ¥,), and
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- zj—cj=c3yj—cj,;=l,2,..,n
are now computed, where c,, is the matrix of costs corresponding to the basic variables

in the objcctlve fynction. Now, for this initial basic feasible so]utlon
(smce the remammg x’ 8 are Zero)

Z c'pXp

= EC X
1—343' B:

=0.
To see whether there exists some better basic feasible solution, we compute z,— ¢

for the non-basic variables x, and x, as follows
2 - c! =c'py, — €,
_ -
=0 0, |+ 7
=7

5= =Cp) 6

=(0 O)‘:3] +5

=5
Thus the initial simplex table is
| c= (=7 -500)
p B Xp IDSTND T - T 1 ,
0 b, =a, x;=6 1 2 1 0 Xp/y,,=6/1=6
0 | by=a, [x=12]4* 3 0 1 | xph,=124=3
z¥=0 7 5 0 0 G- ¢ ‘
¢; are positive, we choose the most positive of

Now, since more than one Zi—¢

these, viz., 7, which lies in the column y,. Since all the components of yl are positive,

- therefore the' vector a, will cnter the basis B.

To select the vector which should leave the basis, we compute {
Yir-
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5 5 S Y -
and choose the minimum of these ratios, viz., ¥ile 3. Thus the vector b, = a, leaves the

basis. The leading common element is 4, which becomes the leading element for the
next iteration. The leading element has been shown in the simplex ‘table in bold type
with a star.

First iteration. Introduce a; and drop a, from B. Convert the leading element to -
- unity by dividing that row by 4 and all other members of the column y, to zero by using
the relations given is Step 6. Compute again the values Z= ¢
The next simplex table is obtained as follows :

c=(7-500)

Cp B *p Yy Y2 V3 W

0- | By=a, | %= 1 54 1 -1/

w B, e, | e 1 34 0 14 ] z-g
*=21 | 0 —1/4 0 —74

It is apparent from the table that all new z; — ¢; are < 0 and hence an optimum
solution has been reached. Thus an optimum baSlC feasible solution to the glven LPPis

x—3 x2 0, minz*¥=-21, ormaxz=21.

2.10 Artificial Variables

Give a LP problem, sometimes it may not be easy to read off a basis matrix B
_ from the coefficient matrix A. In such a situation we add some new. variables to the
* problem called artificial variables to easily get a basis matrix.

Suppose the problem is of the form
minimize z=c’x
subjectto Ax=b
x20

‘where A is a m X n matrix of rank m(< n)..

To the i-th constraint defined in Ax=bletus add a vanable x,/(=0) with coefﬁcnent
1,fori=1, 2, ..., m. Then the new set of constraints can be written as
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Ax+1x =b
x20,x,20
where -Im' is a m x m identity matrix and x = (x,,, iﬂz,‘ ey X )
Or, we can write
Ak = b, x=0.
where A*=(Al)

()

Then we obtain B =1  as a basis matrix of A*,
Here x ;s are called artificial variables.

When artificial variables are ﬁsed in a problem, there are two methods by which
we can solve the problem. ' ' '

Method 1. (Charnes Method of Penalties) : Charnes suggested that a very high
cost be attached to each of the artificial variables so that the objection function becomes

=AM Xyt X))

The reason is that the purpose of introducing artificial variables is to get an initial
b.f.s. and so we would like to get rid of these variables once the purpose is served. This
method of solving a LP problem is called the Big M Method or the Method of Penalties.

After introducing artificial variables and attaching large cost M to each of them, we
solve the problem by the Simplex Method.

~ When we obtain the optimum basic feasible solution, we may be in one of the

following situatibns— - ' _ . )

" - (a) The optimum b.f.s. does not have any artificial variable as a basic, variable.
In this case every artificial is zero and hence the solution is optimal for the
original problem.

(b) The optimum b.f.s. includes an artificial variable at the zero level. In this
case we get a degenerate optimal b.f.s.

(c) Theoptimal b.f.s. includes an artificial variable with a positive value. Hence
the given LP problem does not possess an optimum b.f.s. In such a case we
say that the given problem has a Pseudo-Optimum b.f.s.
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Nete : While applying the simplex method whenever a coefficient vector corresponding
to some artificial variable leaves the basis, we drop the corresponding y; vector and all
entries relating to that vector from the simplex table.

Example : Use Charnes penalty method to

minimize z = 2x, +x,

subjectto 3x, +x,=3
Ax, +3x,26
x, +2x,<3
X%, 2 0.

Solution : The inequalities representing the constraints for the given problem are -
reduced to equations by introducing surplus and slack variables x; > 0'and x, 2 0,
respectively. Further, in order to easily get a basis matrix, two artificial variables x>0
and x, > 0 are also introduced. The problem then becomes
minimize z* = 2x, + x, + Mxg + Mxg
subjectto Ax=b,x20,

where _
31 0 001
A=l4 3 -1 0 1 O
1 2 0100

X = (X, Xp, s Xg) andb=(3 6 3)
An obvious basic feasible solution to the problem is thus
. xz=(3 6 3) = (xg X5 Xg)
taking B = I,,. :
Starting table. After computing Y = (y,, ¥,, ., ¥g)’ im@ z',j ~¢pi=1,2,..,6,the
initial simplex table is . :

> [ 1 [o 0o | M | M

cg | B Xp Y1 Y2 Y3 Y4 Ys Y16

M|a, | 3 3* 1 0 0 0 1

M|a | 6 | 4 -1 | o 1| o

0 a | 3 1 2 | o 1 0 0
M |TM-2|4M-1 | M 0 0. 0 |z'-c
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Second interation. Introduce a, and drop as.

T | 2 1| o |o
s | B | % | vl m | wn |
2 | aq |35 | 1 o | w5 | a
1 a, | 6/5 | 0 1 | -35 |0
0. a, 0 0 0 | 1 1 .
| —1ws| o | o | -us o | z-q

Since z; — ¢; < 0 for all j, and optimal solution to the problem has been attained.
Thus the optimum b.f.s. is
x,=3/5,x,=6/5
and minz=12/5.

Example 2. Maximize z = 3x, + 2x,
subject to 2%, +x,S2
3x;+4x, 212
Xy X, 2 0.

Solution : After introduction of slack surplus and artificial variables the problem
becomes

minimize z* = - 3x, — 2x, + Mx; |
subjectto  2x, +x, +x;
3x, + 4%, —x, + %, = 12
%20,j=1,2, 04 5.

Starting table.
: -3 -2 0 0 M
< B X Y1 Ya Y3 Ya Ys
0 a, 2 2 1 1 0 0
as 12 3 4. 0 = _
12M | 3M+3|3M+2 | 0 | -M | 0 | -




First iteration.

23 [=2|" o 0 M

Cp « Xp Y1 Y2 Y3 Y4 Vs

=B 2 2 1| 1 | o 0

M a4 | -5 0 4 | -1 1
| M-4|-sM-1| 0| -am-2|-M | 0 |2"-¢

Since Z=¢ <0 for all i, we have reached the optimal b.f.s. But this solution has
the artificial variable x; at a positiye level, i.e., x5 = 4. Hence the given LPP does not
possess an optimum b.f.s. '

2. Two-phase method : This is alternative method to solve a LP problem in which
artificial variables have been introduced.

The procedure is as follows—

Phase 1. In the first phase we use the simplex method to solve the auxiliary LP
problem ‘

minimize z* = Xx

subject to the given constraints altered after introduction of artificial variables

,xm. s.

The following three cases may arise—
Case 1. min z* > 0. In this case at least one artificial variable is positive. So
the original LP problem does not possess any feasible solution. Hence we stop here.

Case 2.
value zero.

min z* = 0 and at least one artificial variable appears in the b.f.s. with

In such a case we continue with simplex interations with an attempt to drive out
all artificial variables from the b.f.s. If we succeed, we get an initial b.f.s. to the original
problem and we proceed to phase 2. On the other hand if the artificial variable x, ‘

.corresponding to the s-th constraint cannot be removed from the basis, the s-th constraint
of the original problem is redundant. : '

Case 3.

In such a case the optimum b.f.s. of the auxiliary probicm_ serves as an initial b.f.s.
for the original problem and we proceed to phase 2.
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So long as phase 1 ends in min z* = 0, the final simplex table of phase 1 is
converted to an initial simplex table of phase 2 by deleting the non-basic artificial vectors
and recomputing value of the objective function and z,—¢’;s in accordance to the original
problem. - :

Phase 2. We assign actual costs to the legitimate variables (i.e. decision variables
of the original problem) and cost zero to each of the artificial variable appearing in the
basis at zero level. Then the Simplex Method is applied until an optimum b.f.s. (if any
exists) is obtained. This gives the optimal solution to the original LP problem.

Example : Use two-phase simplex method to

minimize z =—3x, - 2x,
subjectto 2x, +x,<2
3x, +4x, 212
X5 X, <0.

Solution : After introducing slack and surplus variables x; and x, respectively
and an artificial variable x, to the second constraint we get the constraints as

A¥x¥*=b

A*¥x* >0,

. 21 1 0 1

where A_340—1'1

x = (x), Xy Xg Xy x5)s b= (2, 12Y

X3
So an initial b.f.s. is.x, =

'xs

with basis matrix 12 — (“3“5)'

Pﬁase 1. The auxiliary problem is
minimize z* = x;
subjectto A*x*=b

x¥20
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Sta.rting table.

0 0 0 o | 1
- “p B _ *s i A Y3 Yo | Ys
0 | a 2 | 2 1* 1| o 0
1 | a 12 3 5 0 -1 1
12 3 4 e | 0| z-c,
First iteraii(;n. Introduce dz and remove a.- ’
| 0 0 0 0 | .1
Cp B *p by ) Y3, Y4 Ys
0 a, 2 2 + 1 1 ) 0
1 as 4 -5 0 -4 -1 1 1
4 -5 -4 Z-¢

_Since Z;—¢ <0 for all j,
X, [xz} = [2] is an optimal solution to the auxiliary LP problem. But min
X5 4
'z¥ =4 > 0. Hence original LP problem does not possess a feasible solution.
Example. Solve the problem
minimize z=-x, + X,
subjectto 2x, +x,2>4
X IRy 2 7
T X Xy 20
Solution : Adding surplus variables x, and x, and the artificial variables x,, and
x,, to the two constraints be get the constraint equations as
X+ T Xy +%,=T
subject to  x;, Xy, Xq5 Xy, X, X5 2 0.

Phase 1.  The auxiliary problem is
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e

minimize z* =x_, +x,,

subjectto A*x*=b
x* 20,

21 -1 010
= .
where  A*={} 7 o -1 0 1

X =X Xy Xy X X, X0) , b=(4,7) -

Starting table.
0 o | o0 0 I
cg | B X M Y2 Y3 Y4 Vs Yo
1 |a |x,=4| 2 | 1 | -1 ] 0 | 1 0
1| a x,=71 1 7 0 -1 0 1 |
*=13| 3 8 - -1 0 0| ¢
- First iteration. Introduce a, and remove a,.
o | o 0 0 1 1
| B | % |y |y |y v |y | %
1| ag |[x,=3]-137| 0 -1 1/7 1 | 117
0| a | x,=1[|-U7 | 1 0 |=17| 0 [-177
*=3 |-1377] 0 | -3 | 17| o [|-67] z5-¢

We drop column a,.

Second iteration. Introduce a, and remove ag.

| 0 0 0 0 1

cg| B Xp Y1 ) Y3 Ya Ys

a, | x=21 3| o | 7 | 1| -7

a, | x,=4| 2 1 1 0 | -1
#=0.| 0 0 0 0| -1 |z-¢

So the optimal solution has X, =X, =0. We, therefore, drop column y; and go to _
- phase 2. ' )
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Phase II. The starting table for the simplex method is as follows :

Starting table. ,
1 ] 1] o] o
EB B Xg Yol ¥ | V3. Y4
0 a | =231 | 18 |, D 7 1
T | 6| 5=4 |2 | 1| 1] 0
zr=4 [ 1 0 | -1 | 0] z-¢.

We apply simplex method and finally obtain the optimal solution as

xy=| )= 2113 id min 2= 31713,
x,) \10/13 _

2.11 Duality in LP Problems

_For every LP problem there exists another LP problem called its dual. The original
problem is known as the primal problem. Consider the LP problem

minimize z = ¢’x
subjectto Ax 2D (1)
x=20
where A is a m x n matrix, x and c are n x 1 vectors, b is m x 1 vector. The dual of the
above problem is given by '
' minimize z* = b'w
subjectto A'w<c ..(2)
w=0

where w is a m x 1 vector, which is the decision vector for the dual problem.

2.12 Duality Theorems

Theorem 1. The dual of the dual problem is the primal problem.
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Proof. The dual problem (2) can be written as
| minimize z** =-b'w
subjectto —A'w2-c¢
w20
So its dual will be
maximize Z =—¢’x
subjectto —Ax<-b |
: x20
which may be written as
minimize z=c'x
subjectto Ax2=b
x20.
This is the primal problem (1).
Theorem 2. The value of the objective function z = ¢’x for any feasible solution

of the primal is not less than the value of the objective:function z* = b’w for any feasible
- solution of the dual. : '

Prbof. Let z = x, be a feasible solution to the primal problem (1) and w, be a
feasible solution to the dual problem (2).

Then, _
Axy, 2b, x,20
A'wg<c, wy20. -
Therefore,
- 2w A
or, c'xy=2w Ax,
or, c'xo > w’ob = b'w,
Hence the theorem.
Corollary. It immediately follows. that
min ¢’x 2 max b'w
or, minz> max z¥,
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Theorem 3. The minimum value of z in (1), if it exists is equal fo the maximum
value of z* in (2). - : '
Proof. Let x, and w, be the optimum feasible solutions to (1) and (2) respectively.
After introducing surplus variables in (1) we get
(A= )x*=b,x*20
or, A*x*=pb, x*20.
where x*=(x,xy, ..., X,, ) ,andx,  are thé surplus variables.-
Letx"o = (X,0) Xpgr -+ X, 4 . o) D€ an optimal b.f.s. to the primal problem (1) and z,
=min z. _ - :
The equality constraints are
| n . B : .
g’;afle-_x”* = bl., i=_ 1,2, ....m,

so that
-
E;afjxj =b+x,,;
So the objective function can be written as
z  =c'x '
-
:'El ijj

n m ’ .m
— J.ZI{CJ- + z,lﬂ‘aq}xj - .Elni(bi +xn+l‘)
. = = =

for arbitrary ,, 0,, ..., T,

For any b.fs. let T';s be so chosen that _
oom . ' .
¢+ .2-“1“;% =0 if x;is a basic variables j= 1,2, ..., n
=l - ' . .

and - 7,=0if x, ,is a basic variable i=1,2, .., m.

Then corresponding to that b.f.s. the value of the objective function is .

z=— 2Th.

i=1 [
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If we write A* = (a"|,a",, ..., a",,, ) then above choice of 7’ 'simply that
¢+ 1!2’a‘}= 0 if a;is a column of the basis matrix B,
whcrecj=0forj=n+ 1,n+2,...n+m.
Hence, writing = (7, T, ..., nm)’,
c’p+mB=0.
- which gives ' =-cpB Y,
 Therefore, for any non-basic vector a*,
' 1
'J'cia"‘+cj1 —cBB a*+c--(z )

- So, for the opt:mal b.fs.

minz=-— Z'ﬂ:b
i=1

where n,, L S, 1'c are such that
‘J'l:a +¢; >0forall_;-l 2 ...(3)
Since a* o is a unit vector with i-th element — 1 and other elemcnts zero, and
¢ ..=0fori=1,2,..,m,itclearly follows from (1) that

m+1

—m20,i=1,2,..m o ().

The inequalities (3) and (4) mean the w = (— sy = Ty suas~ nm)" is feasible solution
of the dual problem. Further, '

b’'w =-—En‘bl,=min 7
i=1 .

Thus we have found a feasible solution to the dual problem for w_hiéh
z*=min z.
By corollary of theerem 3, this is poss;ble only when
b'w = max z*
Hence, miri z = max z*. .
Theorem 4. If the pnmal problem has an unbounded solutlon the dual problem
has no feasible solution, and vice versa.

Proof. Suppose the primal problem (1) has an unbounded solution. Then min z =
—oc, If possible, let the dual problem (2) have a feasible solution w. Then, by theorem 2,
bwS o, - ‘
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which is a contradication.
Hence, the dual problem has no feasible solution.
The other part of the theorem can be similarly proved.

From the above discussion we conclude that if we can solve the primal

(dual) problem, the optimum value of the objective function of the primal (dual)
immediately follows.

In order to get the optimal solution to the dual from the optlmal solution to. the
primal we follow the following rules :

Rule 1.  If the primal (dual) variable corresponds to a slack starting variable
in the dual (primal) problem, its optimum value i$ directly read off from the optimum
dual (primal) s_imple'x table as the (Zj - cj) value corresponding to the slack variable.

Rule 2.  If the primal (dual) variable corresponds to an artificial starting variable-
in the dual (primal) problem, its optimum value is directly read off from the optimum
dual (primal) simplex table as the (z; - ¢;) value corresponding to the artificial variable,
after deleting the large cost M. :

Example Use duality to solve the followmg LP problem—
maximize z = 3x, — 2x,
subjectto x, +x,<5

x84
1sx,s 6
X%, 20
Solution : The last two constraints of the problem can be written as
' x[+0x2_54,0x1+x2£6,0x1—x2$—1.

The dual of the given problem is, therefore,
minimize z* = 5w, + 4w, + 6w, - w,
subjectto w +w,23

wl+w3—w42—2

W, Wo, Wi, W, 2 0.
Lét surplus variables w, 2 0 and slack variable w, = 0 be appropriately introduced.
Then an initial b. f 5. is
wg=(wy, wy)' =(3, 2)’

56



Starting table.
Cp B 514 |6|-1]0]o0

Wp Nl Y | Vs Ya| Vs | Vs
4 | by=a, | w=3 [ 1|1 ]o]of1]o
1| by=a, | we=2 | 1|0 1] 1]o0

=10 0|0 [-5] 0f-4]-1 Z=¢

Smce Z;—=¢< 0 for all j, and optimal b.f.s. for the dual problem is obtained. Thus the
optimal solutlon to the dual problem is w, =3, w, =2, w; =w, =0, and min z* = 10.

As the primal variables x, and x, correspond to the slack and surplus variables w;
and w; of the dual problem, the optimal solution to the primal problem will be x, =4, x,
=1,and max z= 10.°

2.13 Sensitivity Analysis

In many praética] situations we may want to find not only the optimal solution to
a given problem, but also the effect of changes in the system on th_is solution. Such
investigations are referred to as sensitivity analysis.
For a given LP problem the changes in the system may be classified as follows :
(a) Change in the requirement vector b; |
(b) Change in the cost vector c;
(c) Change in the coefficient matrix A;
(d) Introduction of anew variable;
(e) Introduction of a new constraint.
Consider the LP probiem
minimize z = ¢'x
subjectto Ax=b
Let x,=B~'b be the optimal b.f.s. and z, be the corresponding value of the
objective function.
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(i) Changeinb.Letbchangetob* =b+Ab=(b, +Ab,, b, +Ab,, ..., b,,..b,
+Ab, ) ' :
Corresponding to the basis B, the basic solution to the new problem, therefore, is
x'y =B~ lb* |
=B~ (b + Ab)
=B"'b+B-1+Ab
=xg+ B~ 'Ab

=xp+ 2 (A,

where B, is the k-th column of B~ L
In order that x" be feasible we must have
x* Bi = >0, i=1,2,.

e, xg+ kEl B,Ab, 20, where B, = (i, k)th element of B~ !

ie., :1 Bﬂ(Ab >—xp, i=1,2,.
In pamcular if only one component of b changes, say b changes to b + Abk, then
x* B,—th fori# k.
X' =Xy + By Aby.

So, for feasibility of the new solution we must have

|Ab, 2 o 2Bk jf B‘k > 0.
Bak

ik :
z.—c‘SOfor all j.

Since (z c ) values are unaffected by chan gein b, the (z -c; ) values corresponding
~toxywill be same as those corresponding tox” 5, and as x is optlmal for the old problem,
Z—¢; <Oforallj=1,2,..,n Hence, if x’ g 18 feasible, it will be optimal b.f.s. for the
new problem. '
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(i) Change in c. Let ¢ change to c* =c+Ac.
Since the constraints are indcpendent of ¢, x, will be a b.f.s. for the new problem.

The new (z; - c)-values will be
* * — ¥ . *
z;-¢c; =c BB aj-jcj
=(cy+Acp)B~ Laj —(¢;+Ac)
_ -1 ]
= (zj— c}.) + (AcgB a;- ch)
So, x, will be optimal for the new problem if
| zj=c";<0 forallj
ie, Ac’pB~'a;~Ac,<- (z-c) forall)
(iii) Change in A. Suppose A =a,,a,, ..., a,), and 4 changes to a”,.
(a) If a, a non-basic vector in the optimal solution x, i.e., B does not contain
a,, then x, will be a b.f.s. to the new problem. Now, forj=1,2,..,n,j#k
(zj - cj)r'lew = (zj B cj)old < 0
I a.nd (zk ~ Cnew = C!BB_ la*k ~C
So, (z,—=Cpew <0 '
if ¢ 2cdpB 'a,.
This is the conditjon for x, to be optimal for the new problem.
(b) Ifa bea basit vector, things become complicated since the feasibility of
the current optimal solution x, may be destroyed. '
‘Let B=(by, by s by s b))
and b, =a, '
Let B*=(b,,b,, ..., b" ... b,)
where b”, = afk.
If B* is a singular matrix B* ! will not be defined. On the other hand, if B*is a
basis matrix, x*, = B*~ 'b will define a basic solution of the new problem.
If x™ 'b will define a basic solution of the new problem.
If x*Bi >0foralli=1,2,..,m, the solution will be also feasi_ble. In that case we
check (Zj - cj)-values for the new problem corresponding to b.f.s. x*; and if z;—¢;<0 for
allj=1,2, ..., n, the solution will be optimal.
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- (iv) Addition of a new variable. Let a new variable x, ., be added to the
problem with associated cost c, , | and coefficient vector @, , |. So the new problem is

minimize z* =z + ¢

_ n+I’xn+l
subjectto -A¥*x*=b,
x*¥20
where A*=(Ag,, DisamX (n+ 1) matrix

X
x* =
xm—l

Sinée Bwill also be a basi.s matrix of A*, Xg wil] be a b.fs. to the new problem. To
‘check whether this solution remains optimal we have to check whether

c <0.

— . p-l
2 _Cn+l"'cBB A1~ Chsr =

n+ 1
(v) Addition of a new constraint. Suppose a new constraint

Ay 1,1

is added to the LP problem.

X +a, Xt ta, X, Sb

If x satisfies the new constraint, x  remains optimal for the new problem as the
_extra constraint does not enlarge the feasible region of the LP problem. If x, does not
satisfy the new constraint, we have to search for a new optimal solution.

Let x, be a slack variable introduced in the new constraint so that the set of
constraints becomes

Ax=b

n .
21'am+ l,)’xj'_"xxzbm-rl‘

i=1

Then it can be easily shown that
* X . )
Xp=| will be a b.f.s. to the new problem.

Advantage of linear programming technique
The advantages of linear programming technique may be outlined as follows :

1. Linear programming helps us in making the optimum utilization of
production resources. It also indicates how a decision maker can employ
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his productive factors most effectively by choosing and allocating these
resources. '

2. ‘The quality of decisions may also be improved by linear programming
technique. The user of this technique becomes more objective and less
subjective.

3. Linear programming technique provides practically applicable solutions
since there might be other constraints operating outside the problem which
must be taken into consideration. Like, just because so many units must be
produced does not mean that all those can be sold. So necessary modification
of its mathematical solution is required for the sake of convenience to the
decision maker. ‘

4.  In production processes highlighting of bottlenecks is the most significant
advantage of this technique. For example, when bottlenecks occur some
machines cannot meet the demand while others remain idle for some time. -~

2.14 Questions

1. Whatisalinear programming problem? Define the following in relation to
a linear programming problem : (a) feasible solution, (b) optimal solution, (c) basic
feasible solution, (d) unbounded solution, (e) degenerate solution, (f) slack variable, (g)
surplus variable, (e) artificial variable. ' '
2. A small manufacturer employs 5 skilled men and 10 semi-skilled men for
* making a product in two qualities : a deluxe model and an ordinary model. The production
of a deluxe model requires 2-hour work by a skilled man and 2-hour work by a semi-
skilled man. The ordinary model requires 1-hour work by a skilled man and 3-hour
work by a semi-skilled man. According to worker union’s rules, no man can work more
than 8 hours per day. The profit of the deluxe model is Rs. 1000 per unit and that of the
ordinary model is Rs. 800 per unit. Formulate a linear programming model for this
manufacturing situation to determine the production volume of each model such that
the total profit is maximized. '
3. .The manager of an oil refinery has to decide on the optimal mix of two
possible blending processes. The inputs and the outputs per production run of the blending
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processes. The inputs and the outputs per production run of the blendmg process are as
follows : - '

5 Input -' - Qutput

Process Crude A CrudeB  Gasoline G, Gasoline G,
Lesi s § 3 5 8
5 -4 5 4 | 4

The maximum a mounts of a vailability of crude A and B are 200 units and 150
units, respectively. Market requirements show that at least 100 units of gasoline G, and
80 units of gasoline G, must b produced. The profits per production run from process 1
and process 2 are Rs. 3,00,000 and Rs. 4,00,000, respectively. Formulate this problem
as a LP model to determine the number of each process such that the total profit is
maximized.

4.  Solve the following LP prob]ems graphically :

| (a) minimize z = 20x, + 10x,
| subjectto  x, + 2x, <40
| 3x, +x,230
4x, +3x,260
x,and x, 2 0.
(b) maximize z = 60x, +90x,
subjectto  x, +2x, <40
2x,+3x,£90
X -x,210
x, and x, 2 0.
5.  Solve the following LP problem using the simplex method :
| maximize z = 3x, + 2x, + 5x;
subject tq X+ .i:z S8
2x, +3x, + 5x, <30
D 2% Xy~ X, S8

Xp5 Xy, Xy 2 0.
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6. . Solve the fo]lowirig LP problem :
maximize z = 6x, + 4x,
subjectto  2x, +3x, <30
3x, +2x,<24
X +x,23
X, Xy 2 0
7. Solve the following LP problem using the two-phase method :
minimize z = 10x, + 6x, + 2x, '
subjectto —x, +x,+x, 21
I +x,—%,22
Xps Xys X3 20,
8. Use duality to solve the following problem :
maximize z = 2x, +x,
subjectto x, + 2x, <10
X, + X, <6
X =X, S2
X -2, <1
X, %, 20. _
8.  Consider the following LP problem :
maximize z = 3x, + 2x, - 5x,
subjectto  x, +x,<2
2, +x, +6x,<6
X —3:2'+3x3 =0
Wy Mgty 220, _
Solve the pi‘oblém. If the requirement vector is chaneced to (2, 10, 5), will the
~optimal solution remain optimal?
9. Solve the following LP fproblem :
maximize z = x, + 5x, + 3x,
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subjectto  x, +2x, +x,=3
le -x, =4
Xy X5 %320, _
If the cost vector is changed to (2, 5, 2), what will be the new optimal solution?
10.. Solve the following LP problem :
maximize z = 20x, + 80x,
subjecf to 4x, +6x,<90
8x, +6x, < 100
X%, 20.

If the following new constraint is added to the model, find the optimal solution to
the new problem— '

5x, + 4x, < 80.
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Unit 3 0 Transportation Problem

Structure
3.1 Introduction
3.2 Mathematical Formulation of a Transportation Problem
3.3 Solving a Transportation Problem
3.4 Methods for Initial B.F.S.
3.5 Moviﬁg Towards Optimal B.FE.S.
3.6. Moving Towards Optimum Solution
3.6.1 To examine thé initial basic feasible solution for non-degeneracy
3.6.2 Determination of z;— ¢; values; The U-V Method |
3.6.3 The optimality test
3.6.4 Selection of entering variable
3.6.5 Selection of leaving variable
3.6.6 Determination of new (improved) basic feasible solution
3.6.7 Working rule to obtain leaving variable and improved basic feasible
solution :
3.7 Transportat_:ion Algorithm for Minimization Problem
3.8 Unbalanced Transportation Problems |

3.8.1 To Modify Unbalanced T.P. to Balanced Type

3.9° Questions

3.1 Introduction

Allocation problems involve the allocation of resources to jobs that need to be

done. Such problems arise when the available resources are not sufficient to allow each
job to be carried out in the most efficient manner. Therefore, the objective is to allot the
resources to-the jobs in such a way so as to either minimize the total cost or maximize
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the total return. When both jobs and resources are expressed in the same units or the
same scale, we have what is generally called a transportation problem.

A typical transportation problem is one which involves shipment of goods from
each of a number of centres called ‘origins’ to more than one place called ‘destinations’
and the cost of shipping from each origin to each destination is different and known,
The problem is to ship the goods in such a manner that the total cost of transportation is
a minimum.

We can formally define a tranéportation problem as follows :

The transportation problem is to transport various amounts of a single
homogeneous commodity at a number of origins to different destinations in such a way
that the total transportation cost is a minimum.

A transportation problem can be stated in terms of am X n cost matrix, where m
denotes the number of origins and n denotes the number of destinations.

3.2 Mathematical Formulation of a Transportation Problem

Let there be m origins and n destinations. Let the i-th origin possess a; units of a
product and b, be the number of units required by the j-th destination, i=1,2,...,m,j=

m

ey If Ea'- E l.e.,the total availability is equal to the total requirement, then

the problem is said to be a balanced transportation problem, else it is called an unba]anced
transportation problem.

We shall first consider a balanced transportation problem.

Let ¢;; be the cost of shipping one unit from origin.i to destination j and x;; be the
amount shipped from origin i to destination j. Then the problem is to

m n

Minimizez= Y, ¥ c,
i=1 j=1 i

subject to. ij=af,i'=l,2, vy M . (1)
j=1 _
Xx,= =b,j=1,2,..,n v (2)
j:

_ x.,20f0r1—1 2 wmj=1,2,..,n
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Here (1) gives the availability constraints and (2) the requirement constraints, and
the objective function z is the total transportation cost.

Clearly, the problem is a LP problem. So to find the opiimal solution to the problem
we trace our path through the basic feasible solutions.

Theorem 1. (Existence of feasible solution) : A balanced transportation problem
always has a feasible solution.

TM:

Proof:  Let § =k (say).

Let us define
x;;=A>b;, for all i and j, where A,s are real numbers.

From constraints (l)

a-Zx =X Zb =Lk

i=1

1

. a. .
So, A.= -]j, fori=1,2,..,m

Then, foreveryj=1, 2, .., n,

Ex =b. Zx:—fza= B

j=1 i j J=1 l"l .
which means that the x,/’s satisfy constraints (2).
Further,

a,-b_j

X, = ?lej = T >0, since a, 20, bj 20 for all i and j.

Hence, the solution is feasible.

Theorem 2. (Existence of an optimal solution) : There always exists an optlmal
solution to a balanced transportation problem. :

Proof. Since Ea E b, there exists a feasible solution to the transponatlon

problem. Further, from constramts (1) and (2) and the non-negativity restrictions it

follows that 0 < x; < <'min (a,; b)
_ Hence, x;; ’s are bounded. Thus the region of feasible solutions is closed, bounded
and nonempty, and hence an optimal solution exists.
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Theorem 3 : Of the (m + n) equations to be satisfied by a fedsible solution to the
transportation problem, (m + n — 1) of them are independent.
Proof : Constraints (1) give

n
j%x,‘j: a,i=1,2,...,m
H

and the first (n — 1) constraints in (2) are _lel.j = bj, ji=1,2,.,n-1
= :

n=1m - n-1
Therefore, % 2 x; =2 b;
j=li= j=l1
m n m
Also, 22 Xij = 24
i=1 j=1 i=1
m n n=1m m

Again, X Xx;=%3x;= 3 3 xy+ 2,
or, E:a;,:ib--i-_ X;

m n n-1 mn n
o, XX,=2b—-3Xb;= bn(since 2a,=% bj]
i=1 j=1 '

j=1 i=1 j=1
which is the last requirement constraint. This indicates that if the m availability
i m n
constraints and the first (n — 1) requirement constraints be satisfied then Za,. =2b

i=1 j=1
ensures that the n-th requirement constraint is satisfied. Hence, out of the (m + n)
_constraints, one is redundant and the remaining (m + n — 1) constraints are independent.

Remark 1 : From theorem 2 it is clear that a basis of the coefficient matrix (as
defined in a standard LP problem) will contain (m + n — 1) independent columns of A.
Hence out of the mn decision variables, a b.f.s. will contain (m + n — 1) variables as
basic variables. So, a b.f.s. can have at most (m + n — 1) positive variables.

Remark 2 : Based on the theorems of linear programming, one of the basic feasible
solutions will be an optimal solution to the transportation problem.

3.3 Solving a Transportation Problem

Finding an optimal solution to a transportation problem consists of the following
two steps—
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() finding an initial basic feasible solution

(i) making successive improvements to initial basic feasible solution until no
: further decrease in the total transportation cost is possible and thereby
* obtaining the optimal b.fs. '

3.4 Methods for Initial B.F.S.

Some simple methods are described here to obtain the initial basic feasible solution
to the transportation problem. These methods can be easily explained by considering
the following numerical example. However, the relative efficiency of these methods is

still unanswerable.

Example 1. Find the initial basic feasible solution of the following transportation

problem.
~ Table 3.1

Warehouse W, W, W, W, Factory
Factory 1 - capacity
'F, 19 [30 | 50 | 10 | 7

E, 70 30 40 60 9

F, 40 8 70 20 18
Warehouse - S 8 7 14 34
requirement

Solution :

F irst method : North-West Corner Rule

In this method, first construct an empty 3 x 4 matrix complete with row and
column requirements (Table 3.2). '
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Table 3.2

_ W, W, W, W, -AvaiIable
F, [ _' | 17
F, 9
F, ' 18

5 8 7 14

Insert a set of allocation in the cells in such a way that the total in each row and
each column is the same as shown against the respective rows and columns. Start with
cell (1, 1) at the north-west corner (upper left-hand corner) and allocate as much as”

" possible there. In other words x;, =5, the maximum which can be allocated to this cell
as the total requirement of this column is 5. This allocation (x,, = 5) leaves the surplus
amount of 2 units for row 1 (Factory F)). So allocate X, =2tocell (1, 2). Now, allocations
for first row and first column are complete, but there is a deficiency of 6 units in column
2. Therefore, allocate x,, = 6 in the cell (2, 2). Column 1 and column 2 requirements are
satisfied, leaving a surplus amount of 3 units for row 2. So allocate x,; = 3 in the cell

- (2,3), and column 3 still requires 4 units. Continuing in this way, from left to right and

~ top to bottom, eventually complete all requirements by an allocation x,, = 14 in the
south-east corner. Table 3.3 shows the resulting feasible solution.

Table 3.3
519) | 2(30) : _ 7
] 630y | 340) | 9
o 470) | 14020 18
5 8 7 14

On multiplying each individual allocation by its corresponding unit cost in
parenthesis and adding, the total cost becomes = 5(19) + 2(30) + 6(30) + 3(40) + 4(70)
+ 14(20) = Rs. 1015.

Second method : The Row Minima Method

Step 1. The transportation table of the given problem has 12 cells. Following the
row minima method, since min (19, 30, 50, 10) = 10, the first allocation is made in the
cell (1, 4), the amount of the allocation is given by x,, =min (7, 14) = 7. This exhausts
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the availability from factory F, and thus we cross-out the first row from the transportation
table to get Table 3.4.

Table 3.4
W, W, W, W,
F, 7 (10) X
F, (70) (30) (40) (60) 9
F, (40) (80) (70) (20) 18
5 8 7 7

Step 2. In the resulting transportation table, since min (70, 30, 40, 60) = 30, the .
second allocation is made in the cell (2, 2), the amount of allocation being x,, = min(9,
8) = 8. This satisfies the requirement of warehouse W, and thus we cross-out the second
column from the transportation table obtaining new table 3.5.

Table 3.5
W, W, W, W,

F, 7(10) X

F, (70) 8(30) | (40) (60) 1

Fy 40) 18
5 X 7 7

Step 3. In table 3.5 since min (70, 40, 60) = 40, the third allocation is made in the
cell (3, 3), the amount being x;; = min [1, 7] = 1. This exhausts the availability from
factory F,. And thus we cross-out the second row from the table getting table 3.6.

~Table 3.6
W, W, A W,
F, 7(10) X
F, 8.30) | 1(40) X
£, | o a | e | 18
5 6 7
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Step 4. The next alocation is made in the cell (3,4), since min (40, 70, 20) = 20,
the amount of allocation being x,, = min(7, 18) = 7. This exhausts the requirement of
warchouse W, and thus we cross-out the fourth column to get Table 3.7.

Table 3.7
W, W, W, W,
F, 7(10) X
F, 8(30) | 1(40) X
F, - (40) | @0 720) | 11
5 X 6 X

Step 5. The next allocation is made in the cell (3, 1), since min (40, 70) = 40, the
amount of allocation being x;, = min (5, 11) = 5. This satisfies the requirement of
warehouse W, and so we cross-out the first column W, to get new table 3.8.

Table 3.8
Wl. W2 W3 W4 )
F, 7(10) X
F, 8.30) | 1.(40) X
F, 5(40) (70) (20) 6
X X 6
. Table3.9
i Wl WZ WB W4
F, - 7(10) X
F, 830) | 1(40) | X
F, | 540 | 6(70) X
X X ¥ "X

Step 6. The last allocation of amount x,; = 6 is obviously made in the cell (3, 3).
This exhausts the availability from factory F, and requirement of warehouse W,

simultaneously. So we cross-out third row and third column to get the final solution in
Table 3.9.
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The initial basic feasible solution and the corresponding transportation cost are
displayed in table 3.10.

Table 3.10
; _Wl W, W, v,
F, 7 The transportation cost is given
F, 8 1 byz=7x10+8x30+1x40+5x
F, | 5 6 | 7 40 +6x 70+ 7 x 20 =Rs. 1110

Third method : The Column Minima Method

This method is similar to row-minima method except that we apply the concept
of minimum cost on columns instead of tows. So, one can easily solve the above problem
by column minima method also.
Fourth method : Lower Cost Entry Method (Matrix minima Method)

The initial basic feasible solution obtained by this method usually gives a lower
beginning cost. In this method, first write the cost and requirements matrix (table 3.11).

Start with the lowest cost entry (8) in the cell (3, 2) and allocate as much as
possible, i.e., x5, = 8. The next lowest cost (10) lies in the cell (1.4), so allocate x,, = 7.
The next lowest cost (19) lies in the cell (1, 1), so make no allocation, because the
amount available from factory F, was already used in the cell (1, 4). Next lowest cost
entry is (20) in the cell (3, 4) where at the most it is possible to allocate x,, = 7 in order
to complete the requirements of 7 units in column 4. Thereafter, next lowest cost is (30)
incells (2, 2) and (1, 2) so no allocation is possible, because the requirement of column
2 has already been exhausted. This way, required feasible solution is obtained (table

3.11).
Table 3.11

W, w, | w, | W,
19 | 3oy | 50) | 70100 | 7
2(70) | (30) | 7¢40) | (60) 9
3(40) | 8®) | (70) | 720) | 18

Requirements 5 8 7 14

73




The feasible solution results in lower transportation cost, i.e.,
2(70) + 3(40) + 8(8) + 8(40) + 7(10).+ 7(20) = Rs. 814.
The cost is less by Rs. 201, i.e. Rs. (1015-814) as compared to the cost obtained
by Northwest comer rule.

Fifth Method. Vogel’s Approximation Method (Unit Cost Penalty Method)

Step 1. In lowest cost entry method, it is not possible to make an allocation to the
cell (1, 1) which has the second lowest cost in the matrix. In is trivial that allocation
should be made in at least one cell of each row and each column.

Table 3.12

W, W, W, W, | Available
F, 19 | 30) | s0) | o] 7
'F, 70) | ¢30) | @o) | 60| 9
F, @) | ® | a0 | col 18
Requirement 5 8 7 14 |

Step 2. Next enter the difference between the lowest and second lowest cost entries
in each column beneath the corresponding column, and put the difference between the
lowest and second lowest cost entries of each row to the right of that row. Such individual
differences can be thought of a penalty for making allocation in second lowest cost
entries instead of lowest cost entries in each row or column. For example, if we allocate
one unit in the second lowest cost cell (3, 1) instead of cell (1, 1) with lowest unit cost
(19), there will be a loss (penalty) of Rs. 21 per unit. In case, the lowest and second
lowest costs in a row/column are equal the penalty will be taken zero. "

Table 3.13
w, | w, | W, | W, | Awailable Penalties
F, (19) | 30) | (50) | (10) 7 )
F, @0 | 30) | @o) | (10) 19 (10)
F, 40) | 8@®) | (70) | (20) 16 (12)
Requirement 5 8/0 7 14
Penalties @) (22) (10 (10).
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Step 3. Select the row or column for-which the penalty is the largest, i.e., (22)
(table 3.13), and allocate the maximum possible amount to the cell (3, 2) with the
lowest cost (8) in the particular column (row) making x,, = 8. If there are more than one
largest penalty rows (columns), select one of them arbitrarily.

Step 4. Cross-out that column (row) in which the requirement has been satisfied.
In this example second column has been crossed-out. Then find the corresponding
penalties correcting the amount available from factor F,. Construct the first reduced
penalty matrix (table 3.14).

Table 3.14
W, W, W, Available Penalties
F, 5(19) | (50) | (10) 7 )
F, (70) | (40) | (60) 9 (20)
Fy 40) | (70) | (20) 10(Note) (20)
Requirement ¢ 5/0 7 14
Penalties @2 (10 oy

Step 5. Repeat steps 3 and 4 till all allocations have been made. Successive reduced -
penalty matrices are obtained. Since the largest penalty (21) is now associated with the
cell (1, 1), so allocate x,, = 5. This allocation (x,, = 5) ellmmates the column giving the
second reduced matrix (table 3.15).

Table 3.15
w, | w, Available  Penalties
F, (50) | (10) | 2(Note)  (40)
F, (40) | (60) 9 - (20)
F, (70) | (20) [ 100 (50)
Réquircmcnt 7 14/4 '
Penalties 10)  (10).

‘The largest penalty (50) is now assoc;iated with the cell (3, 4) therefore allocate
xx, = 10. Eliminating the row 3, the third reduced penalty matrix table 3.16 is obtained.
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Table 3.16

W, W, Available  Penalties
F, (19) | 2(10) 2/0 (40)
F, 7(40)| 2(60) 9/0 (20)
Requirement 7  4/0 (Note)
Penalties (10) (50)

Now, allocate according to the largest penalty (50) as x,, =2 and remaining x,, =
2. Then allocate x,, = 7. '

Step 6. Finally, construct table 3.17 for the required feasible solution.

Table 3.17
W, | W, W, W, Available
» 5(19) 2(10) 7
F, 7(40) | 2(60) 19
F, ) 8(8) ’ 10(20) 18
Requiremént 5 8 7 14

The total cost is :
5(19) + 8(8) + 2(10) + 2(60) + 10(20) + 7(40) = Rs. 779.

The cost is Rs. 35 less as compared to the cost obtained by Lowest Cost Entry
Method. |

In order to reduce large number of steps required to obtain the optimal solution, it
is advisable to proceed with the initial feasible solution which is close to the optimal
solution. Vogel’s method often gives the better initial feasible solution to start with.
Although Vogel’s method takes more time as compared to other two methods, it reduces
the time in reaching the optimal solution.

Summary of Methods for Initial BFS

The methods for obtaining an initial basic feasible solution to aatransponatibn
problem can be summarized as follows :
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1. North-West Corner Rule :

Step 1. The first assignment is made in the cell occupying the upper left-hand
(north-west) corner of the transportation table. The maximum possible amount is
allocated there. That is, x,, = min(a,, b,). This value of x, is then entered in the cell (1,
1) of the transportation table.

Step 2.

(i) If b, > a,, move vertically downwards to the second row and make the
sccond allocation of amount x,, = min(a, b, —x,,) in the cell (2, 1).

(i) Ifb <a, move horizontally right-side to the second row and make the
second allocation of amount x,, = min(e, —x,, b,) in the cell (1, 2).

(iii) If b, = a,, there is a tie for the second allocation. One can make the second
allocation of magnitude x,, = min (@, — a,, b,) = 0 in the cell (1,2)orx,, =
- min(x,, b, —b;) =0 in the cell (2, 1).

Step 3. Start from the new north-west corner of the transportation table and repeat
steps 1 and 2 until all the requirements are satisfied.

2.  The Row Minima Method :

Step 1. The smallest cost in the first row of the transportation table is determined.

Let it be c;.. Allocate as much as possible amount x;; = min(a,, b) in the cell (1, j), so
that either the capacity of origin 0, is exhausted, or the rcqmrement at destination D; is

satisfied or both.

Step 2.
(i) Ifx;=a,sothatthe availability at origin 0, is completely exhausted, cross-
out the ﬁrst row of the table and move down to the second row.

Gi) If x);= h so that the requirement at destination D, is satisfied, cross-out the
J-th column and reconsider the first row with the remaining availability of
ongln 0,. :

Gii) If x;=a = b, the origin capacity a, is completely exhausted and the
requirement at dcstmatlon D, is also completely satisfied. The breaking
choice is made arbitrarily. Cross out the j-th column and make the second
allocation x,, = 0 in the cell (1, k) with ¢, being the new minimum cost in
the first row. Cross-out the first row and move down to the second row.
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Step 3. Repeat steps 1 and 2 for the reduced transportation table until all the
requirements are satisfied.

3.  The Column Minima Method

Step 1. Determine the smallest cost in the first column of the transpoi'tation table.
Let it be c,. Allocate x,; = min (a,, b,) in the cell (i, 1).

Step 2.

(i) Ifx, = b, cross-out the first column of the transportation table and move
towards right to the second column.

() Ifx, | = a;, cross-out the i-th row of the transportation.table and reconsider
the first column with the remaining demand.

(iii) Ifx; = b, = a,, cross-out the i-th row and make the second allocation x;, =
0 in the cell (k, 1) with ¢, being the new minimum cost in the first column.
- Cross-out the column and move towards right to the second column.

Step 3. Repeat steps 1 and 2 for the reduced transportation table until all the
requirements are satisfied. '

4. Lowest Cost Entry Method (LCEM) or Matrix Minima Method
Step 1. Determine the smallest cost in the cost matrix of the transportation table.
Let it be (c&.). Allocate X, = min (a,, b)) in the cell (i, )).

- Step 2.

i If X = @;, Cross-out the i-th row of the transportation table and decrease b,

and a,. Go to step 3.

(i'i) If x;= b » CTOSS out the j-th column of the tran sp_ortaticm' _table and decrease
a, by bj. Go to step 3.

(iii) If X;=a;= bj, cross-out either the i-th row or j-th column but not both. -

Step 3. Repeat steps 1 and 2 for the resulting reduced transportation table until all
the requirements are satisfied. Whenever the minimum cost in not unique, make an
arbitrary choice among the minima.

5.  Vogel’s Approximation Method (VAM)
Step 1. For each row of the transportation table identify the smallest and next-to-
smallest cost. Determine the difference between them for each row. These are called
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(L, 1) (1,3) |
22l 29
@0 @, 4)
(i) Loop L
02 @.3)
epl ol @y
(3,2) 3,5 |

(ii) Non-loop L’
Fig.: 3.1
Theorem 1. Every loop has an even number of cells.

Proof. For any loop, we can always choose arbitrarily a starting point and a
direction by an arrow mark (=). We consider a loop formed by n number of cells which
.are consecutively numbered from 1 to n. Now assume that cell 1 and 2 exist in the same
column. Thus the step from cell 1 to cell 2 involves a row change.‘Obviously, step from
cell 2 to cell 3 must involve a column change, from cell 3 to cell 4 a row change, and so
on. In general, the step to cell k involves a row change, if and only if,  is even. Since the
step to cell 2 involved a row change, the step from cell n to cell 1 must be a column -
change and the step from cell n — 1 to cell n a row change. Hence n will be even.

Set containing a loop. A set X of cells of a transportation table is said to contain
a loop if the cells of X or a subset of X can be sequenced (ordered) so as to form a loop.

Theorem 2 (Linear Dependence and Loops). Let X be a set of column vectors
of the coefficient matrix of a transportation problem (T.P.). Then a necessary and
sufficient condition for vectors in X to be linearly dependent is that the set of their
- correspondmg cells in the transportation table contains a loop.

Proof Let us consider an m-origin, n-destination T.P. exprcsscd in its matrix
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‘penalties’. Put them along side the transportation table by enclosing them in the
parentheses against the respective rows. Similarly, compute these penalties for each
column.

Step 2. Identify the row or column with the largest penalty among all the rows
and columns. If a tie occurs, use any arbitrary tie breaking choice. Let the the largest
penalty correspond to i-th row and let ¢ be the smallest cost in the i-th row. Allocate the
largest possible amount x;; = min(a,, b,) in the cell (7, j) and cross-out the i-th row or the
J-th column in the usual manner.

Step 3. Again compute the column and row penalties for the reduced transportation
table and then go to step 2. Repeat the procedure until all the requirements are satisfied.

3.5 Moving towards Optimal B.F.S.

Before proceeding to find the optimal solution one needs to know the following:

Loops in transportation table and their properties
Definition (Loop). In a transportation table, an ordered set of four or more cells
is said to form a loop if,

(i) any two adjacent cells in the ordered set lie either in the same row in the
same column; and

(i1) any three or more adjaceﬁt cells in the ordered set do not lie in the same row
or in the same column.

The first cell of the set is considered to follow the last one in the set.

If we join the cells of a loop by horizontal and vertical lineup segments, we get a
closed path satisfying the above conditions (i) and (ii). Let us denote the (z, j)th cell of
the transportation table by (i, j). Then it can be observed from the diagrammatic
illustration in Fig. 1 that the set L = {(1, l),' 4,1),4,4),(2,4),(2,3),(1,3)} forma
loop and on the other hand the set L’ = {(3, 2), (3, 5). (2, 5), (2, 4), (2, 3), (1, 3), (1, 2)}
does not form a loop, because three cell entries (2, 3), (2, 4) and (2, 5) lie in the same
row (second).
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form : _

Minimize z = ¢’x : ¢, cER™", subject to the constraints : Ax = b, x > 0, beR™
+n_ where b = (a,, ay, ..., @, by, by, .., b)), Alds an (m +n) X mn real matrix containing
the coefficients of constraints and cis the cost vector. :

To prove that the condition is sufficient.

Let us assume that the cells associated with the vectors of X contain a loop

L=A{@, ), k), (L k), ... (0, 0), (2, D}

If a; denotes the column vector of matrix A associated with the variable X [the
cell (i, )], thcn it follows that a;=e;+e, where €p> €y B ER™* " are unit vectors. Thus
X includes the column vectors :

a;=e+e,.

o and a,=e, +e

a,=ete alk=el_+em+k,aim=e.+e

i m+m""’a =ep+em+

m+k? po

m +j'
Hence by successive addition and subtraction, we geta, —a, +a; —a,, +..+a,

—a, =0
(smce by theorem 1, a loop contains an even number of cells).
Therefore, this particular subset of X, and hence X itself, is a linearly dependent
Set.‘
To prove, the condition is necessary.
‘ Letus assume that X is a linearly dependent set. Then, there must exist scalars A, i
not all zero such that
ZA; a;=0, where a EX.
For snmphﬂcaﬂon, remove all those vectors from X for Wthh ?L =0.

~ Now we arbitrarily choose a vector from the remaining vectors in X .Letitbe a; =

e;+e,, ;. Weclaimthat X must contain at least one more vector whose second subscript
is j. Suppose, to the contrary, it does not, then since JL =0, the (m + j)th component of
the vector equatlon Z}. a;= 0 gives JL =0, whlch is a contradication.. So X must

contain at least one more vector with sccond subscnpt J-

Suppose that this vector is a;=ete,. By similar reasoning we conclude that

there must be at least one more vector in X with the first subscript k, say, a,, = ¢, +

e, , - By same argument once again, X must contain at least one vector with the second
subscript 1. Let it be, say, q, =¢;+e, .
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Thus we have determined four vectors in X, namely A Ay , and a; whose
corresponding cells, form a loop. Thus the proof is complete.

If the last vector is @ ,=e, +e, , instead of g, then as explained just before
there must exist at least one more vector with first subscript n. If it is a , a loop is
complete, if not, letitbe a,, =€, + ¢, , ,. X must contain at least one more vector with
second subscript 0. Now two cases will arise :

(1) The first subscrlpt of newly discovered vector is one that has already been
identified. In this case a loop has been completed.

(2) The first subscript of the newly discovered vector is also new. In this case,
since the number of vectors in X is finite (by extending the above reasoning),
we conclude that eventually a loop must be formed.

Corollary. A feasible solution to a transportation problem is basic if, and only if,
the corresponding cells in the transportation table do not contain a loop.

This corollary provides us a method to verify whether the current feasible solution
to the transportation problem is basic or not. ’

3.6 Moving towards Optimum Solution

After obtaining an initial basic feasible solution to a given transportation problem,
the next question is ‘how to arrive at the optimum solution’. The basic steps for reaching
the optimum solution are the same as given for simple method, namely :

Step 1. Examination of initial basic feasible solution for non-degeneracy. If it is
degenerate, some modification is required to make it non-degenerate).

Step 2.
(i)  Determination of net-evaluations (cost- difference) for empty cells.
(i) Opti mallty test of current solution.

- Step 3. Selectlon of the entering variable, provided step 2(ii) indicates that the
_current solution can be improved.

Step 4. Selection of the leaving variable.

_Step 5. Finally, repeating the steps 1 through 4 unul an nptlumum solutlon is
obtained.
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3.6.1 To examine the initial basic feasible solution for non-degeneracy -

A basic feasible solution of an m x i transportation problem is said to be non-
degenerate, if it has the following two properties :

(1) Initial b.f.s. must contain exactIy m + n~- 1 number of individual allocations.

For example, in 3 x 4 transportation problem, the number of individual
allocations in b.f.s. obtained by any one of the methods discussed so far is
equal to 6i.e., 3 +4 — I, which can be easily verified from tables 3.3,3.10,
3.11 and 3.17.

(2) These allocations must be in ‘independent pdsitions’.

Independent positions of a set of allocations mean it is always impossible
to form any closed loop through these allocations. Tables 3.18—3.20 show
the non-independent, and 3.21 independent positions by *.".

Table 3.18
Non-independent positions

h 4

Closed loop

Table 3.19
Non-independent positions

Closed loop
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Table 3.20
Non-independent positions

Table 3.21
Independent positions

In the above allocation patterns of different problems, the dotted lines constitute
what are known as loops. A loop may or may not involve all allocations. It consists of
(at least 4) horizontal and vertical lines with an allocation at cach comer which, in turn,
is a join of a horizontal and vertical lines. At this stage loop of table 3.20 should be
particularly noted. Here two lines intersect each other at cell (4, 2) and do not simply |
join, therefore this is not to be regarded as a corner. Such allocations in which a loop
can be formed are known as non-independent positions whereas those (of table 3.21) in
which a loop cannot be formed are regarded as indepchdent.

3.6.2 Determination of Z;— ¢ values—The U-V Method

Unlike the simplex method, the - ¢; values (as defined in simplex method) for a
transportation problem can be dctcrmmed more easily by using the properties of the
primal and dual problems.

Let us consider the following m-origin, n-destination transportation problem :

Determine x ;SO asto minimize = Z 5_‘, x (c ) subject to the constraints :
i=1 j=1
n n
Exi:a, or, a.— 2x.=0,fori=1,2,..,m
[j i i =l

j=1
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m m
Yx,=b; or, b—Xx,=0forj=12,..n
i=1 Joo= Y

and X;> 0, forall i and j.

Letu,, uy, ..., u,, andv,v,, .., v, be the dual variables associated with the above
-origin and destination constraints, respectively. Since the above primal T.P., hasm + n
constraint equations in mn number of variables, so the dual of above problem will
contain mn constraints in m + n dual variables in the form :
up+v;<c;and u, v; are unrestricted for all i and j (. constraints in the primal are
equations) :

From duality, for any standard primal L.P.P. with basis B and associated cost
vector ¢, the associated solution to its dual is given by wy=c B™". L, Thus, if a; be the j-
th column of the primal coefficient matrix, then an expression for evaluatmg the (z; -

j)-values for minimization problem is given by

Z-¢=c B(B“a) c, -WB“J ;  forallj.
But, in'the case of transportation problem (which is thc special case of L.P.P.), the
dual solution can be rcprescnted by
@, v)= (U, s . Vs s V)
and therefore the z; - c; values are obtained by simply replacing c;—¢,
v’)’,a,— a;in the above formula to get

A A U

z;—c;= @, V’)“;j_ c;=(u, Uy Vs V) [e; 4 €, ] C;

ij
-where a; is the column vector of the coefficient r_natrix associated w1th the variable

x,;. For simplicity, we shall denote €~ Zj by d;;. d,’s are known as net evaluations.

m+j

Now, since the net evaluation must vanish for the basic variables it follows that d,.j
=c,—(u;+ vj) for all non-basic cells (i, j) where u; and v, satisfy the relation.c, =u, +v,
for all basic cells (r, s). Except for the degeneracy case, there are m + n — 1 dual equations
in m + n dual unknowns « and v, and solve uniquely for the remaining m + n — 1
variables. After this arbitrary assignment, say u, =0, the rest of the values are obtained
by simple addition and subtraction. Once we determine all the u;and v, the net evaluations
for all the non-basic cells are easily determined by the relauon dj=cy—(u+v)

Alternative method to determine net-evaluations

The necessary condition for optimélity'can also be established in the form of the
following theorem. N
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Theorem 7. If we have a feasible solution consisting of m + n — 1 independent
allocations, and if numbers », and v; satisfying ¢ _=u_+ v, for each occupied cell (7, 5),
then the evaluation d‘.j corresponding to each empty cell (7, j), is given by dy. =C;— (u, +
V).

i - , :
Proof. The transportation problem is to find x;2 0 in order to minimize
. m n ’
=3 $afc) - NG
i=1j=1 -

subject to the restrictions

Exy=api=1.23 m )
m ) ) T
bj—g,ixij=bj,j= 1,2,3,...,n - e (8)
and x;2 0, forall i and j.

The restrictions (7) and (8) may be written as

O=a;=Bx,i=1,23,.m - . (9)
jil :

0=b 3k J=1 2850 it ' : ... (10)
$o gmp Y . ;

Any multiple of each ofthese restrictions [(9) and (10)] can be legally added to
the objective function (6) to try to eliminate the basic variables. These multiples are
denoted by u(i=1,2,....m)andv(=1,2,..,n), respectively. Thus,

m n m n L m

i=l j=1 i=l Jj=1 Jj=l1 . i=l -

m n I I I
. =L = = i=

The necessary condition for a coefficient to be zero is
Cog = U TV , e o il )

for each basic variable x_, i.e., for each occupied cell (r, s). Since there aré m + n - 1

number of eq[iations of the form (12) in (m + n) number ofunknown (x, and vj), so if
assignment is made to an arbitrary value of one the u, or Vi then restof the (m+n-1)
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unknowns can be easily solved ia_l‘gebraically. One reasonable and convenient rule, which
will be adopted here, is to select the 1, which has the largest number of allocations in its
row, and assign it the value of zero. And'c,.j =u;+v immediately yields v, for columns
containing those allocations.

To prove the required resﬁlt, first suppose that the empty cell (7, j) be connected to
occupied cells by a closed loop (table 3.22). -

First, allocate + 1 unit to the empty cell (7, j), and in order to balance the total
requirement of warehouse Wj, and — 1 unit to occupied cell (7 j). Consequentyly, the
total amount available from factor F, will be balanced by adding + 1 unit to occupied
cell (1, 5), which in turn causes column W, to become unbalanced. So balance the column
W, by adding — 1 unit to the occupicd cell (i, s).

Table 3.22
.......................... L T——— w, Available

I L)

F, a;
‘(c,.j)+1 {€;.)-
£ & &%
a ] +1

Fr : (er) (cr.r) ar
F m aHI
Required { b, b, ... b, s b, b,

This process will give the cost difference dfj [called the empty cell evaluation for

(i, /)] between the new solution and the original solution.

Thus,

dfj = Cij_ cr' + Crs ™ C:'S

i
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Using the result (12) for all occupied cells such as (7, j), (r, s) and (i, s),
' dij = Ci— (u,+ vj.) +(u,+v)—(u+v)= Cij— (uf'+ vj). .. (14)
This proves the result for a loop of square shape connecting the empty cell (i, /) to
occupied cells. In a similar fashion, one can generallze for aloop connectmg the empty

cell (i, j) to occupied cells.
3.6.3 The optimality test

Ifd;>0 for all £, j then the b.f.s. under test must be optimal. But, if d;; < 0 for at
least one empty cell, then we can improve upon the solution. This way, it is possible to
improve the b.f.s. successively till the optimal solution is obtained for which d;;> 0 for
each empty cell. )

The optimality test for given b.f.s. of the transportation problem may be
summarized as follows :

1.  Start with a basic feasible solution consisting of m + n — 1 allocations in
independent positions.

2. Determine a set of m +n numbers u (i = 1 2, 3 vy 1) anc} _vj(i =1,2,3,..,
n) such that for each. occupied cell (ns) ¢, =u, +v,.
3. Calculate cell evaluations d;; for each empty cell (i, j) by using the formula
dy - (u; + v) _ '
4.  Finally, examine the matrix of cell evaluations d,; for negative cntnes and
conclude that— :

(i)  solution under test is optimal, if none is negative;
(ii) alternative optimal solutions exist, if none is negative but any is zero;

(iii) solution under test is not optimal, if aﬁy is ‘negative, then fur_ther
improvement is required by repeating the above process.

L.

We now proceed to answer the question : how to improve the current b.f.s. if it is
not optimal, i.e. if all d;; <0.

3.6.4 Selection of entering variable

Here our aim is to minimize the cost of transportation. So the current basic feasible
solution will not be optimum so long as any of the net evaluation d, j is negative. Thus if
all d;; are non-negative, the current solution is an optimum one, otherwise using simplex
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like criterion we select such variable x, to enter the basis for which the net evaluation
- d. = n;lin {di)" <0}.

3.6.5 Selection of leaving variable ;
~ Our next step will be to determine the basic variable to be removed and then to
determine the new improved basic solution. The simplex like leaving criterion in the

notations of transportation problem states that if the variable x, is selected to enter the
basis, then the basic variable x,, corresponding to the minimum ratio mln{i 3 Virs > 0},
Jirs :

will Ieavc the basis, where Vi corresponds to y;; in simplex algorithm. However, due to
special structure of the transportatlon problem the above criterion has been simplified
to a great’extent. '

- Theorem 3.8. Let {b,, b,, ..., b,,, ,_,} be abasis set for the column vectors of the
coefficient matrix A of m-origin, n-destination transportation problem. In the
representation of any non-basic vector @, as a linear combination : -

m+n-1 N

arx = E} yl'f& b
=
of basis vectors, every scalar element (yl.ﬂ_) is either— 1 or + L.
Proof. Siniea (a,.b,,--.b, . _,}isalinearly dependent set, the set of the associated

cells contains a loop. So thc cell (r, s) must be in a loop. The vectors b‘.’s'arc, of course,
some column vectors a ij’s of A.

Suppose the set of associated cells contains the following loop :
L={(r, 9)-(r, 0., D@, @) ., 0, v).(4, 5)}.
wherea,, .., a, are the given basis vectors (S_m +n- ).
Now, since a;=ete,, for all i and j, and because the number of cells in
a loop is always even, we have
_ a,-a,+a, —'qpq +..+a,-a =0 .
which yields, a,=a,-a,+a, —..—a,+a,.
This is the unique representations of a,_as a linear combination of basis vectors;
and hence the y,  elements associated with the basis vectors in the above representatx on
are+1,-1,..,— Land + L.
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This completes the proof of the theorem.

Thus if x is the entering variable, the basic variable xp, will leave if Xp, = min
{xp,}, since positive y,  is + 1 for all basic variables.

3.6.6 Determination of new (improved) basic feasible solution

After the entering variable x_and leaving variable x,, are determined, all that
remains to determine is ‘the new (improved) basic solution’. The usual transformation
formulae for obtaining the new basic solution, in the simplex transportation notation,
are given by

Xy

' V fry

- X ~ _ XB .
=28 y >0 and £ =xp ——",y, foralli#r.

iry

Since y,, =+ 1, y,,, =+ 1 for basic variables, and y, . = 0 for non-basic variables,

irs
the above transformations get simplified to
Xp1 = Xp"
i:JE:,'::J‘:JE?: }n\ Bs'—xﬁt fOl‘a“meX 15t

and Xp =.xp, foralx, ¢ X,

where X is the set of those basic variables whose corresponding cells are included
in the loop as identified in the preceding theorem.

In practice, however, this improvement procedure is quite simple. The working-
rule is outlined in the following steps :

3.6.7 Working rule to obtain leaving variable and improved. basic
feasible solution :

Step 1. After identifying the entering variable x,, describe a loop which starts
and ends at the non-basic cell (r, 5) connecting only the basic cells. Such a closed path
exists and is unique for any non-degenearate basic solutions.

- Step 2. The amount (say 0) to be allocated to the entering variable is
interchangeably subtracted from and added to the successive end points of the closed
loop so that the supply and demand constraints always remain satisfied.

Step 3. Then the minimum value of 8, which will render non-negative values for
all the basic variables in the new solution, is obtained. This consequently, determines
the leaving variable.

90



3.7 Transportation Algorithm for Minimization

Problem

The transportation algorithm for minimization problem can be summarized in the
following steps.
The Algorithm :

Step 1. First construct a transportation table entering the origin capacities a,, the
destination requirements bj and the costs ¢

i
Step 2. Find an initial basic feasible solution by Vogel’s method or by any of the
given methods. Enter the solution in the basic cells.

Step 3. For all the basic variable x;;, solve the system of equations u, + v, = ¢;;, for
all i, j for which cell (i, j) is in the basis, starting initially with some u, = 0 and entering
successively the values of u, and v, on the transportation table as shown in table 3.24.

Step 4. Compute the cost differences dU =Cy (u; + vj) for all the non-basic cells
andenter them in the upper right corners of the corresponding cells.

Step 5. Apply optimality test by examining the sign of each d!.j :
(f) If all a',,j > 0, the current basic feasible solutiorris an optimum one.
(i1) If at least one d; <0 (negative), select the variable x, (having the

most negative d ) to enter the basis.

Step 6. Let the variable x,_enter the basis. Allocate an unknown quantity say 0, to
the cell (7, s). Then construct a loop that starts and ends at the cell (r, s) and connects
some of the basic cells. The amount 0 is added to and subtracted from the transition
cells of the loop in such a manner that the availabilities and requirements remain satisfied.

Step 7. Assign the largest possible value to 0 in such a way that the value of at
least one basic variable becomes zero and other basic variables remain non-negative (=
0). The basic cell whose allocation has been made zero will leave the basis.

Step 8. Now, return to step 3 and then repeat the process until an optimum basic
feasible solution is obtained.

The above interactive procedure determines an optimum solution in a finite number
of steps. This method is called MODI METHOD and can be easily remembered.
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Computational demonstration of optimality test

Example 2. Obtain an initial basic feasible solution to the transportation problem

of Example
1. (a) Isthissolution an optimal solution? If not, obtain the optimal solution.
(b) If a company is spending Rs. 1000 on transportation of its units to
four warehouses from three factories, what can be the maximum saving by optimal
scheduling?
Table 3.23
w, W, W, W, Available
E 5(19) 2(10) 7
F, 7(40) | 2(60) 9
3 8(8) - 10(20) 18
5 8 7 14

Solution : (a) Computational demonstration for optimality is performed by taking
the initial basic feasible solution of Example 1 with m + n — 1 allocation is independent
positions with transportation cost of Rs. 779 obtained (by Vogel’s Method). This initial
basic feasible solution is given in table 3.23.

Step 1. The initial b.f.s. has m + n — 1 allocations, that is, 3 + 4 — 1 = 6 allocation
in independent positions. Therefore, condition (1) of optimality test [in sec. 3.6.3] is
satisfied.

Step 2. Since u(i=1,2,3) and v(i=1,2,3,4) arc to be determined by means of
unit cost in the respective occupied cells only, assign a i-value of any particular amount
(conveniently zero) to any particular row (convenient rule is to select the u, which has
the largest number of allocations in its row). Since all rows contain the same number of
allocations, take any of the u, (say u,) equal to zero.
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~Table 3.24

W, W, Wy W, U
(19) .(10) - 10
(40) .(60) 40
8) .(20) 0
v; 29 8 0 20

When Uy = 0, v, =20 (since Cay = Uy + Vi Cyy = QO). Similarly, ¢, = Uy + v, Or 8=
0+v,orv,=8. Again,c\y=u, +v,or10=u, + 20 (since ¢, = 10), then u; =—10. In
the same way : 60 = 20 + u,, which gives u, =40, 19=u, + v, or 19 =-10 + v, which -
givesv = 29, 40= Uy +v;0r 40=40+ 128 which gives v, =0. This completes the set of
u(i=1,2,3)and v}.(j =1, 2, 3, 4) as shown in table 3.24.

Step 3. To compute the matrix of cell evaluations di=c;—(u; +v) for empty
cells, it is convenient to write a matrix [c;] for empty cells and the matrix of numbers [
+ v, for empty cells only, then subtract the later matrix from the former one:

Table 3.25 (from table 3.3)
Matrix [c;] for empty cells

6o | 50
70 | @0y
(40) . 70)
Table 3.26

Matrixf [u; + -vj} for empty cells

-2 ~10
69 48
29 | 0

Now, subtracting the matrix [u, + vj] from the matrix [c,.j], i.e., (table 3.25—table
3.26), the following matrix [c&. ~(u;+v Ji)] of cell evaluation is obtained.
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Table 3.27

32 60
R S £
11 . 70

Table 3.27 gives the empty cell evaluations : d,, =32,d,; =60,d,, = 1,d,, = 18, .
d,, = 11 and dy; = 70. The largest negative cell evaluation (marked V) is d,,=-18.S0 .
allocate (say, 0) to cell (2, 2) as'much as possible; followed by alternately subtracting
and addiflg the amount of this allocation to other corners of the loop in order to restore
feasibility (non-negativity of allocation). For this purpose, the initial basic feasible
solution ean be read from table 3.28. It is easily seen by the following rule that at the
most 6 = 2 units can be allocated from cell (2, 4) to cell (2, 2) still satisfying the row and
column total and non-negativity restrictions on the allocations.

Table 3.28
5 2 Available
7
19 (10)
+0 7 2-0
. . 9
(40) (60)T
A I
8-0 10+6 18
® (20)
Required 5 -8 7 14

A rule to determine 0 : Reallocation is done by transferring the maximum possible
amount 0 in the marked (V) cell. The value of 8, in genetal, is obtained by equating to
zero the minimum of the allocations coptaining — 8 (not + 0) at the min [8 -0,2 - 0] =
0or2-6=0or0=2units. Thus improved basic feasible solution is given in table 3.29.
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Table 3.29

_ Available
5(19) 2(10) 7
2(30) 7(40) 9
6(8) . 12(20) 18
Required i3 8 7 14

The cost for this solution becomes
=5(19) + 2(10) + 2(30) + 7(40) + 6(8) + 12(20) = Rs. 743.

The cost of Rs. 743 is Rs. 36 less than Rs. 779.

Step 4. Test this improved solution (table 3:29) for optimality by repeating steps
1, 2 and 3. In each step, following matrices are obtained.

Table 3.30

Matrix [cU] for empty cells

: (30) (50)

(10) (60)
(40) (70)
Table 3.31

Matrix [, +v,] for empty cells

u
(19) (10) - 10
(30) (40) 22
(8) (20) 0
v, 29 8 18 20
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Table 3.32

Matrix [u; + vj] forempty cells -

-2 8

41 . . 42

29 o 18 |
Table 3.33
Matrix [u; + vj] for empty cells

32 42

29 . .. 18
11 . 52

Since none of the cell evaluations is negative, i.e. d,=32,d,,=42,d, =29,d,,
=18,d;, =11 and d; = 52, the solunon g:ven in table 3 29 is Opnmal with minimum
. cost of Rs. 743.

(b) Maximum saving = Rs. 1000 - Rs. 743 = Rs. 257.

-

3.8 Unbaiancéd Transportation Problems

So far we have discussed the balanced type of transportation problems where the
total destination requirement equals the total origin capacity (i.e., Za;, = Zb ) But,
sometimes in practical situations, the demand may be more than the avallablllty or vice

versa (i.e., Za; # ij)
If in a transportation problem, the sum of all available quantities is not equal to

. ; _

the sum of requirements, that is, aﬁa,. "> bj, the problem is called an unbalanced
. =1 j=1

transportation problem '

- 3.8.1 To modify unbalanced T. P to balanced type

An unbalanced T.P. may occur in two different forms (i) excess of availability, (11)
shortage in availability.
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~ We now discuss these two cases by considering our usual m-origin, n-destination

m

T.P. with the condition that Z a; # Z b;,

Case 1. (Excess avallablhty, Zai 2 Ebj).
The general T.P. fnay be stated as follows :

Minimize z= Zl E XiCip subject to the constraints
i= J—
n 3
Y x.<a, . : =122, ettt
=17 i
I )
Ex‘fbj, g5y Qs
and xUZO, i= 1, 20 o BT =1 20 e TR

The problem will possess a feasible solution if Za, 2 Zb,. In the first constraint

the introduction of slack variable x; , ., (i=1, 2, ..., m) gives
E.xg+Jc:”Hl a, 2 [ S T
m( n - nt n { m n
or, z E Xij +'xt ntl | = z a; orn 2 2 xu + E Xintl = 2 a;
i=1\ j=1 i=1 j=1 i=1

or,

E Xine) = E @~ 2 b, = excess of avallablllty |: : Z xu =b; ]
= j=

If this excess avallablhty is denoted by b, , |, the modified general T.P. can be
reformulated as :

m n+l

> E_x (c, ), sub_;ect to the constraints :
i=1j=1 -

Minimize z =

Zx = i=l, 2, ..om
m

qu.-, - j=1,2,.,n+1
xijZO, for all i and j,

n+l

wherecl“I—Ofori:l,Z ’mandzma_sz
. = iz
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This is clearly the balanced T.P. and thus can be easily solved by transportation

algorithm.

Working rule : Whenever Za, 2 Ebj, we introduce a dummy destination-column

in the transportation table. The unit transportation costs to this dummy destination are
all set equal to zero. The requirement at this dummy destination is assumed to be equal

to the difference Zai >%b r

- Case 2. (Shortage in availability, i.e., Za, > ij)

In this case, the general T.P. becomes :

. m n
Minimize z= ¥ ¥ x;(c;),, subject to the constraints :
i=1 j=1
n
in’=ai’ i=1,..,m
j=tY
m
qu<b j=1,..,n
xUzO, i=1..,mj=1,..,n

Now, introducing the slack variable x, , |, (j = 1, ..., n) in the second constraint,

we get

it

Ex +X =0y j=1.,n

ij in+1

or, z[zx +} £5 o, 2[ Zx]+>:xm1, £
j=1 j=

J=1f j=1 i=1 Jj=1

1 1]
o, _E] X, 1.j E] 2 4; = shortage in availability @, | say.
J= j=t =l

Thus the modified general T.P. in this case becomes :

Minimize z= "'”: f)lxgcfj,, subject to the constraints :
i=l j=
1 .
EﬁxU:ﬂi' i=1,.,m+1
m )
XX +x <b j=1,.,n



x,20, i=lmt =1,
. m=1 n+l
wherec, =0forj=1,.,nand ¥ q;=X b;.
LLLAE S . j__']

i=l

Working rule : Whenever Za; 2 ij, introduce a dummy source in the
transportation table. The cost of transportation from this dummy source to any destination
are all set equal to zero. The availability at this dummy source is assumed to be equal to
the difference (2a, > b)), |

Thus, an unbalanced transportation problem can be modified to balanced problem
by simply introducing a fictitious sink in the first case and a fictitious source in the
second. The inflow from the source to a fictitious sink represents the surplus at the
source. Similarly, the flow from the fictitious source to a sink re‘pnesents the unfilled
demand at that sink: For convenience, costs of transporting a unit item from fictitious
sources or to fictitious sinks has the case may be are assumed to be zero. The resulting
problem then becomes balanced one and can be solved by the same procedure as
explained earlier. The method for dealing with such type of problems will be clear in
the example below : ' '

Example 3. A steel company has three open hearth furnances and five rolling

mills. Transportation cost (rupees per quintal) for shipping steel from furnaces to rolling
mills are shown in the following table :

Table 3.40
Mills
M, M, M, M, Ms | Capacities
. (in quintals)
F, 4 2 |2 2 6 8
Furnaces F, 5 4 5 2 1 12
F, 6. | 5 4 | 7 | 3 14
Requirement
(in quinlals)

What is the optimal shipping schedule?
Solution * Since the total requirements of mills are 30 quintals and the total
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capacities of all furnaces are 34 quintals, the problem is of unbalanced type. Thcrcfore,
the problem can be modified as follows. :

Step 1. (Modifying the given problem to balanced type)

Since the capacities are four quintals more than the total requirements, consider a
fictitious mill requiring four quintals of steel. Thus the modified (balanced) transportation
cost matrix becomes-:

Table 3.40

Mills
M, M, M, M, M, M, | Capacities
' (in quintals)
| F, s [ 2 325610 g
F, | s | 4 5 2 1 0 12
F, 6 5 4 7 3 0 14
Requirement | 4 4 6 8 8 4 34

Step 2. (To find the initial solution).

Applying the Vogel’s method in the usual manner, the initial solution is obtained
as given below : ' '

Table 3.41 |
M, M, M, M, M M;:
F, 4(2) 4(2)
F, 42) | 8(1)
Fy | 4(6) 6(4) | 400

This gives the transiaortafion cost = 4(2)_ +'4(2) +4(2) + 4(2)' + 8(1) + 4(6) + 6(4)
+ 4(0) = Rs. 80.

- Step 3. (To test the initial solution for optimality)

Since the total number of allocations is 7 (instead of 6 + 3 — 1 = 8), this is a
-degenerate basic feasible solution. Therefore, allocate an infinitesimal quant:ty A to
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empty cell (1, 1). Then, proceeding in the usual manner, following tables for tesfing the
optimality of the solution are obtained.

Table 3.42
ul.
AG) | @ | 0 | |
| @ | 0
@ | | 2
(6) (4). o (0)
v | e 2 2 2 1 -2
| Table 3.43
(u; + v;) for empty cglls
2 T
| 0
4 2 | 2 : . -2 _
| 4 : 4 3 [ . 2
4 .2 2 2 1 -2
Table 3.44 .
Dj=c;—(u+v ;) for empty cells
5 8
1
| 2 | 3 : A )
1 A

Since all d =c;—(u;+v ) for émpty cells are non-negative, the solution under test
is optimal. Further, 0 in the cell (3, 5) indicates that a}tcmatwe solution will also exist. -

Example 4. A company has three plants at locations A, B and C which supply to
warehouses located at D, E, F, G and H. Monthly plant capacities are 800, 500 and 900
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units respectively. Monthly warehouse requirements are 400, 400, 500, 400 and 800
units respectively. Unit transportation costs (in Rs.) are given below :

To
D E | F G H
A 5 8 6 | 6 3
From B 4 7 7 6 5
C 8 | 4 8 | 6 4

Determine an optimum distribution for the company in order to minimize the
total transportation cost.

Solution : In this problem, the total warehouse requirements (= 2500 units) is
greater than the total plant capacity (= 2200 units). Therefore, the problem is of
unbalanced type. So introduce a dummy plant P having all transportation costs equal to
zero and having the plant availability equal to (2500 — 2200) = 300 units. The modified
transportation table is thus obtained as below :

To
D E F G H Plant capacity
A 5 8 6 6 3 800
From B 4 7 7 6 5 500
C 8 4 6 6 4 900
P 0 0 0 0 0 300
Requirements | 400 | 400 | 500 | 400 | 800
Using Vogel’s Method the following initial b.f.s. obtained :
D - E F G H Plant capacity
| A 500(6) 300 (3) 800
B | 400(4) ' 100(6) A(5) 500 + A =500
C 400(4) 500(4) 900
P 300(0) 300
400 - 400 500 400 800 + A =800
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Since the number of basic cell allocations (= 7) is less than m + n—1(=8),the
solution is degenerate. To make the number of allocations equal to 8 introduce a negligible
small positive quantity A in the independent cell (2, 5). Now test the current solution for
optimality. '

Starting table
i
- - +
500-0 | 300+8
&) 2 1(8) 3 106 (&) 413 -2
+ -11
400 | | 100+6 | A-®
“4) (7) 8 |1(7) 8 [(6) 6 0
+ -1 + :
400 500
(8) 3@ ©) 7 (6 5 W] S}
+ -2 +
400 |+6 100-
©  -2{0  -1]© 2 |0 510  -1f6
v| 4 5 8 6 5

Here 6 = minr [500, fi\; 300] = A. .SO enter the non-basic cell (4, 3) and leave the
basic cell (2, 5).
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Since the number of basic cell allocations (= 7) is less than m + 1 — 1 (= 8), the
solution is degenerate. To make the number of allocations equal to 8 introduce a negligible
small positive quantity A in the independent cell (2, 5). Now test the current solution for
optimality.

Starting table
u,
+ - -
500-0 | 300+0
(5) 218 3 |(6) ) 4 ((3) -2
4 i
400 - 10046 |° A-B
@ @ s|lm  8|© 5) 0
i -1 +
400 500
3) 3 4) (6) 7 (6) 5 @4 o
+ -2 +
400 +0 100-0
(0) —-2|© ~1](0) 2 | (0) 5 | 0) -1 6
v.| 4 5 8 6 5

Here 0 = minr [500, A, 300] = A. So enter the non-basic cell (4, 3) and leave the
basic cell (2, 5).
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Second Iteration Table. Vacate the cel] (4, 4) and occupy the cell (3, 4).

U

+ - o+
200-6 ' 600+9
G - 3 |® 3le) |® 5 13 -1
+ 0 +
400 100
@) ) 4l 16 5) 4|0
+ -1 | . “
400 0 - 300 200-6
8) 4 |4 ® 7|6 ) 0
+ + + +
300
©  -3l@® -3 ©  -1|©0  -3|-7
v| 4 s 1 6 4

Here min [200-6, 200-6] = 0 = 6 = 200.
So introduce the cell (3, 3) and drop the cell (1, 3) or (3, 5) in the next iteration.
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Third Iteration Table. Vacate the cell (1, 3) or (3, 5) and occupy the cell (3, 3).

Optimum Table
| i
+ #
| 0 800
G  4l® 46 |6 3) 0
+ + |
400 100
1@ (7) 4 (7 (6) (). 3(0
+ ' +
400 200 300
® 4|4 ©) 1G) @ . 3|0
+ + | +
300
0  -2/0 . =20 ) ©  -2|-6
v| 4 4 6 6 3

Since all the net evaluations are non-negative, the optimum solution is :
X,3=0,x,5=2800, x,, =400, x,, = 100, x;, = 400, x,, = 200, X34 =300, x,; = 300.
The optimum transportation cost i§ given by | |
z=0(6) + 800(3) + 400(4) + 100(6) + 400(4) + 200(6) + 300(6) + 300(0)

= Rs. 9200.
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3.9 Questions |

1. What is a transportation 'problcm? Write a linear programing model of a
transportation problem.

2. Find an initial basic feasible solution to the following transportation problem
using
(i) Northwest Corner rule
(i) Column minima method
(iii) Row n_‘iinima method
(iv) Matrix minima
(v)  Vogel’s approximation method

To
1 2 3 Supply
1 2 7 4 5
2 3 3 1 8
From 3 5 4 7 7
4 1 6 2 14
Demand 2 9 18

3. A’manufacturing company has three factories F|, F, and F, with monthly
manufacturing capacities of 7000, 4000 and 10,000 units of a product. The product is to
be supplied to seven stores. The manufacturing costs in these factories are slightly
different but the important factor is the shipping cost from a factory to a store. The
following table represents the factory capacities, the store reqmrements and the unit
transportation costs.

Stores Factory -

S, Sy S, S, S5 S¢ | S, Capacity

F, 5 6 4 3 7 5 4 | 7000

Factory  F, 9 4 3 4 3 2 1 | 4000
F, 8 4 2 5 4 8 1 | 10,000

Store Demand 1500 2000 4500 4000 2500 3500 3000
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Find the optimal transportation plan so as to minimize the total transportation cost.

_ 3. Acompany has factories at four different places (1, 2, 3 and 4) which supply
items to warehouses A, B, C, DandE. Monthly factory capacities are 200, 175, 150 and
325, respectively, Monthly warehouse requirements are 110, 90, 120, 230 and 160
respectively. Unit shipping costs (in rupees) are given in the following table :

To
A B C .D E
1 13 1 31 8 * .20
2 14 9 17 26 10
From 3 25 11 12 17 15
4 10 21 13 o 17

Shipment from 1 to B and from 4 to D are not possible. Determine the optimum
distribution plan to minimize the shlppmg cost.

4. A company has plants at A, B and C which have capacities to produce 300
Kg., 200 Kg. and 500 Kg. respectively of a particular chemical per day. The production
costs per Kg. in these plants are 70, Rs. 60 and Rs. 66 respectively. Four consumers
have placed orders for the product on the following basis :

- Consumer - Kg. required per day Price offered (Rs./Kg)
i s 400 100
Ril 250 } 100
I 350 102
v 150 ‘103

‘Shipping costs (in rupees per Kg.) from plants to consumers are given in the table
below :

.To
I II I IV
A 3 5 4 6
From . B 8 11 9 12
C 4 6 2 8

Find the optimal schedule for the situation.
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Unit 40 Assignment Problems

Structure

4.1
4.2
4.3

44
4.5

- 4.6

Introdi;ction

Mathematical Formulation of Assignment Problem
Hangarian Method for Assignment Problem

4.3.1 Assignment Algorithm (Hungarian Assignment Method)
4.3.2 A rule to draw minimum number of lines ’
Unbalanced Assignment Problem

Variation of the Assignment Problem

4.5.1 The Maximal Assignment Problem

Questions

4.1 Introduction

Assignment problems are also allocation problems. A typical allocation problem |

is as follows :-

Suppose there are n jobs to be assigned to n persons. Each person can perform
only one job at a time with varying degree of efficiency. If the cost (payment) ¢;; to be
made to i-th person to perform the j-th job be given for all i and j, then the problem is to
find how the n jobs should be allocated to the n persons so as to minimize the total cost.
The assignment problem can be stated in form of a n X n cost matrix (_CU) as given

below:
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Table 4.1

Jobs
: °n 12 Cij Cin
_ 2 €y Cog = wwaise Coi e Con
Persons
i €% Cip Cj e €
n 6% o Coi e &,

4.2 Mathematical Formulation of Assignment Problem

Mathematically, an assignment problem can be stated as follows :

m n
Minimize z = Ei E«] CiXy

{1 if the i - th person is assigned the j - th jbb

subject to x,. =

4 0 otherwise -

n

Xy = G .e.; one job is done by i-th person) g e

. =

m

gix,}. =1 (i.e., j-th job is done by one person)  j=1,2,..,m,

Clearly, an assignment problem is a particulaf'case of a transportation problem
- withx; =0 or 1 forall i and j. '

4.3 Hangarian Method for Assignment Problem

_ - The solluti'on technique of the assignment problem can be easily explained by the
following example.

Example 1. A department has four subordinates, and four tasks have to be
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performed. Subordinates differ in efficiency and tasks differ in their intrinsic difficulty.
Time each man would take to perform each task is given in the effectiveness matrix.
How should the tasks be allocated to each person so at to minimize the total manhours?

- Table 4.2
Subordinates
I | 1 I v
A | 8 26 17 11
B 13 28 4 26
Tasks C 38 19 | 18 15
D 9 | 26 | 24 | 10

Solution : To understand the problem initially, step by step solution procedure is
necessary. ' )

Step 1. Subtracting the smallest elément in each row from every element of that
row, we get the reduced matrix (table 4.3).

Table 4.3
18 9 3
24 |' 0 22
23 4 3
9 16 14

Step 2. Next subtract the smallest element in each column from every element of
that column to get the second reduced matrix (table 4.4).

Table 4.4

0 14 9 3
9 20 0 2
23 0 3

9 12 14

Step 3. Now, test whether it is possible to make an assignment using only zeros.
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If it is possible, the assignment must be optimal by theorem 2 of section 4.3. Zero
assignment is possible in table 4.4 as follows : '

(a) Starting with row 1 of the matrixf (table 4.4), éx_amine the rows one by one
until a row containing exactly single zero elements is found. Then an experimental
assignment (denoted by*) is marked to that cell. Now cross all other zeros in the column
in which the assignment has been made. This eliminates the possibility of marking

further assignments in that column. The illustration of this procedure is shown in table
4.5.

Table 4.5
I i m | I
Al ox | 4] o | 3
B o | 20 | ox | 22
¢ | | o .| 3 0
D o | 12 | 14.]| o

(b). When the set of rows has been completely examined, an identical procedure
is applied successively to columns. Starting with column 1, examine all columns until
a column containing exactly one zero is found. Then make an experimental assignment
in that position and cross other zeros in the row in which the assignment has been
made.

. Table 4.6
I II I IV
A 0% 14 9 | 3
B 9 20 0* 22
C 23 0* 3: ®
D 9 12 14 0*

_ Continue these successive operations on rows and columns until all zeros have
been either assigned or crossed out. At this stage, re-examine rows. It is found that no
additional assignments are pdssible. Thus, the complete ‘zero assignment’ is given by A"
— 1, B—>1I, C - II, D — IV as mentioned in table 4.6. According to theorem 1, this
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assignment is also optimal for the original matrix (table 4.2). Now compute the minimum
total man-hours as follows : '

Optimal assignment ~ B-I B-II cII DIV
Man-hour 8 4 19 10 (Total 41 hours)

Now the question arises : what would be further steps if the complete optimal
assignment after applying step 3 is not obtained? Such difficulty will arise whenever all
zeros of any row or column are crossed-out. Following example will make the procedure
clear.

~ Example 2. A car hire company has one car at each of five depots a, b, ¢, d and e.
A customer requires a car in each town, namely A, B, C, D and E. Distances (in kms)
between depots (origins) and towns (destinations) are given in the following distance
matrix :

Table 4.7
a b c d e

160 | 130 | 175 | 190 | 200
135 | 120 | 130 | 160 | 175
140 110 155 170 185
50 50 80 80 | 110°

55 35 | 70 80 | 105

MU A% >

How should the cars be assigned to customers so as to minimize the distance
travelled? ' :

Solution : Applying steps 1 and 2 as explained in example 1 we get the table 4.8.
Table 4.8

30 o* | 35 | 30 15
15 ® | o* 10 | ®
30 ® | 35 | 30 | 20
0% ® 20 | ® 5
20 ® 25 15 15
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Now, column 1 has a single zero in row 5. Make an assignment by putting ‘*’ and
cross the other zero from the row which are not yet crossed. Column 3 has a single zero
in row 2, make an assignment and delete the other zeros which are uncrossed.

It is observed that there are no remaining zeros; and row 3, row 5, column 4, and
column 5 each has no assignment. Therefore, desired solution cannot be obtained at
this stage, we now, proceed to the following important steps.

Step 4. Draw the minimum number of horizontal and vertical lines necessary to
convert all zeros at least once. It should, however, be observed that (in all 7 x n matrices)
less than n lines will cover zeros only when there is no solution among them. Conversely,
if minimum number of lines is n, there is a solution. Following systematic procedure
may help us to drow the minimum set of lines.

1. For simplicity, first make the table 4.8 again and name it as table 4.9.

Table 4.9
VL, |
30 0 35 | 30 15 v
15 & . S . & B
30 ® 35 30 20 V
0 ® 20 ® 5 £y
20 ® 25 15 15 v

2. Mark (\) row 3 and row 5 as they are having no assi gnments and column 2
as having zeros in the marked rows 3 and 5.

3. Mark (\/ ) row 1 because this row contains assignment in the marked column
2. No further rows or columns will be required to mark during this procedure.

4.  Now start drawing required lines as follows :

First draw line (L,) through marked column 2. Then draw lines (L, and'L3)
through left uncovered, the required lines will be (L, L, and L,).

Step 5. In this step :
(i)  first select the smallest element, say x, among all uncovered elements of the

table 4.9 [as a result of step 4] and *
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- (i) | then subtract this val uc_}c from all values in the matrix not covered by lines
and add x-to all those values that lie at the intersection of any two of.the
linés L, L, and L, (Justification of this rule is given on the next page).

After applying these two rules, we find x = 15, and a new matrix is obtained as
given in table 4.10. | |

Table 4.10
s | o | 20 | 15 0
15 15 0 10 0
15 0 20 15 5
0 15 20 0 5
5 0 10 0o | o

Step 6. Now re-apply the test of step 3 to obtain the desired solution. Therefore,
proceeding exactly in the same manner as in step 3 obtain the final table 4.11.

. Table 4.11
15 ® 20 15 0'
15 15 0 10 | ®-
5
5

15 o | 20 | 15
0 15 [ 20 | ®
5 ® 10| ® | ®

~ It is observed that there are no remaining zeros, and every row (column) has an
assignment. Since no two assignments are in the same column (they cannot be, if the
procedure has been correctly followed), the ‘zero assignment’ is the required solution.

From original matrix (table 4.6), the minimum distance assignment is given by

Route | A-e | Bc| C-b | D-a | E-d | Total distance travelled
{ Distance | 200 | 130 | 110 | 50 | ‘80 570 kms.
(kms.)

Note : Table 4.11 may be obtained very quickly if we first apply step 2 and then step 1
in the original table 4.6. : '
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Justlﬁcatlon of rules used above in step 5 :
Justification of rules we have used in step Sis based on the followm g two facts :

(i) The relative cost of assigning i-th facility to j-th job is not changed by the
subtraction of a constant either from a column or from a row of the original
effectiveness matrix.

- (i) An optimal assignment exists if the total reduced cost of the assi gnment is
zero. This is the case when the minimum number of lines necessary to
‘cover all zeros is equal to the order of the matrix. If however, it is less than
n further reduction of the effectiveness matrix has to be undertaken.

The underlying logic can be explained with the help of table 4.9 in which only
3(= n — 2) lines can be drawn. Herc an optimal assignment is not possible. So further
reduction is necessary.

Further reduction is made by subtracting the smallest non-zero element 15 from
all elements of the matrix table 4.9. This gives the following matrix :

Table 4.12
L
15 |15 20 15 0
L, o 15 15 5 5
L, 15 15 20 15 5
15 15 5 15 10
6 -5 10 0 0

This matrix contains negative values. Since the objective is to obtain an assignment
with reduced cost of zero, the negative numbers must be eliminated. This can be done
by adding 15 to only those rows and columns which are covered b_y three lines (L,, L,,
L,) as shown above. In doing so the following change is noted.
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~Table 4.13

Ll
15 (-15+15) 20 15 0
L, | (0+15) [(=15+15)+15] | (=15+15) | (=5+15) | (~15+15)
| 15 (-15+15) 20 15 5
Ly |(=15+15) | [~15+15)+15] | (-15+15) | (~15+15) | (-10+15)
5 15+15) | 10 0 0

This table is exactly the same as table 4.9. In fact, all this is the result of making
the least non-zero element at the intersections, and subtracting from all uncovered
elements, and leaving the other elements unchanged.

4.3.1 Assignment algorlthm (Hungarlan Assngnment Method.)

Various steps of the computational procedure for obtaining an optimal assignment
may be summiarized as follows :

Step 1. Subtract the minimum of each row of the effectiveness matrix, from all
the elements of the respective rows. _

Step 2. Further, modify the resulting matrix by subtracting the minimum element
of each column from all the elements of the respective columns. Thus obtain the first
modified matrix. |

Step 3. Then, draw the minimum number of horizontal and vertical lines to cover
all the zeros in the resulting matrix. Let the minimum number of hnes be N. Now there
may be two possibilities :

(i) - If N = n, the number of rows (columns) of given matrix, then an optimal
assignment can be made. So make the zero assi gnment to get the required
solution.

(ii) If N<n,then prbceed to step 4.

Step 4. Determine the smallest element in the matrix, not covered by the N lines.
Subtract this minimum element from all uncovered elements and add the same element
at the intersection of horizontal and vertical lines. Thus, the second modified matrix is

obtained.
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Step 5. Again repeat steps 3 and 4 until minimum number of lines become equal
to the number of rows (columns) of the given matrix i.e., N = n.

Step 6. To make zero-assignment). Examine the rows successively until a row-
wise exactly single zero is found, mark this zero by “*’ to make the assignment. Then,
mark a cross (x) over all zeros if lying in the column of the marked “*’, showing that
they cannot be considered for future assignment. Continue in this manner until all the
rows have been examined. Repeat the same procedure for columns also.

If no unmarked zero is left, then the process ends. But if there be one or more
unmarked zeros in any column or row, then mark ‘*’ against one of the unmarked zeros
arbitrarily and mark a cross in the cells of remaining zeros in its row and column.
Repeaf the process until no unmarked zero is left in the matrix.

Step 8. Thus exactly one zero marked ‘*’ is obtained in each row and each column
of the matrix. The assignment corresponding to these ‘*’ marked zeros will give the
optimal assignment.

4.3.2 A rule to draw minimum number of lines

A very convenient rule of drawing minimum number of lines to cover all the 0’s
of the reduced matrix is given in the following steps :

Step 1. Tick (\) rows that do not have any marked (*) zero.

Step 2. Tick (V) columns having marked (*) zeros or otherwise in ticked rows.
Step 3. Tick (V) columns having marked 0’s in ticked columns

Step 4. Repeat steps 2 and 3 until the chain of ticking is complete.

Step 5. Draw lines though all unticked rows and ticked columns.

This will give us the minimal system of lines.

4.4 Unbalanced Assignment Problem

'If the cost matrix of an assignment problem is not a square matrix (number of
sources is not equal to the number of destinations), the assignment problem is called as
Unbalanced 'Assignment Problem. In such cases fictitious rows and/or columns with
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zero costs are added in the matrix so as to forma square matrix. Then the usual assignment
algorithm can be applied to this resulting balanced problem. :

Example 3. A company is faced with the problem of assigning six different
machines to five different jobs. The costs are estimated as follows (in hundreds of rupees):

Table 4.14
_ Jobs
1 5 4 B 4 5
1 | 25 5.0 101 6 1.0
) 2.0 5.0 15 7 3.0
Machines 3 3.0 6.5 2.0 8 3.0
4 3.5 7.0 2.0 9 4.5
5 40 | 70 3.0 9 6.0
6. | 60 9.0 5.0 10 6.0

Solve the problem assuming that the objective is to minimize the total cost.

Solution : Introduce one more column for a fictitious job (say, job 6) in the cost
matrix in order to get the following balanced assignment problem. The cost corresponding
to sixth column are taken as zero.

Table 4.14
Jobs
iz 2 3 4 5 6
1.s] 25.-] 50 1.0 6 1.0 0
2 |20 50 | 15 7 3.0 0
Machines 3 3.0 6.5 2.0 8 3.0 0
4 3.5 7.0 2.0 9 4.5 0
5 1. 40 70| 3.0 9 6.0 0
6 6.0 9.0 5.0 10 6.0 0

The problem can now be solved by the discussed method.
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4.5 Variation of the Assignment Problem

In this section, we shall discuss a variation of the asmgnment problem.
4.5.1 The Maximal A551gnment Problem

Sorneti mes the assignment problem deals with the maximization of an objective
function rather than minimizing it. For example, it may be required to assign persons to
jobs in such a way that the expected profit is maximum. Such a problem may be solved
easily by first converting it to a minimization problem and then applying the usual
procedure of assignment algorithm. This conversion can be very easily done by
subtracting from the highest element all the elements of the given profit matrix; or
equivalently, by placing minussign before each element of the profit-matrix in order to
make it a cost-matrix.

Following examples will make the procedure clear.

Example 4. (Maximization problem). A company has 5 jobs to be done. The
following matrix shows the return in rupees on assigning i-th (i = 1, 2, 3, 4, 5) machine
to the j-th job (j = A, B, C, D, E). Assign the five jobs to the five machines so as to
maximize the total expected profit.

Table 4.15
Jobs

A B C D E

1 5 11 10 12 4

2 2 4 9 3 5

Machines 3 3 12 5 14 6
4 6 " | & |8 7

5 7 9 8 12 5

Solution : Step 1. (Converting from maximization to minimization problem) :

Since the highest element in the matrix is 14, so subtracting all the elements from
14, the following reduced cost (opportunity loss of maximum profit) matrix is obtained.
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Table 4.16 -

9 3 4 -2 10
12 | 10 & 11 9
11 2 9 0 8
8 | 0 10 3 7
T 5 - 6 2 2

Step 2. Now following the usual procedure of solving an 3531 gnment problem an
opumal assignment is obtained in the following table :

Table 4.17
1 ® o* | ® 5
® | 13 ® 5° | o
5 1 7 o | 5
3 0* 9 4 5
ox | 3 3 1 5

This table gives the optimum assignmentas: 1 —C,2—>E,3—>D,4—>B,5—
A with maximum profit of Rs. 50.

4.6 Questions

1. Discuss the similarity between a transportation problem and an assignment
problem. -

2. Discuss the steps of Hungarian method for solving an assignment problem.

_ 3.  Five different jobs are to be éssigned to five operators. The following matrix
gives the processing times in hours;
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Operator
3

Job

[ T NS I S
P e s .
~ oo o
0o O & 1 0o
o NS T IR I N (S
co L B L |

Find the optimal job assignment.

4. How should four sales persons be assigned to four sales regions when the
annual sale figures (in crores of rupees) for different salesmen working in different
sales regions are as below : '

Sales region
1 2 3 4
Byl 3 11 8 9
2 5 7 9 7
Salesman 3 7 8 9 9
4 6 11 12

8
5.  The flight timings between two cities X and Y are given in the following
two tables. The minimum layover time of may crew in either of the cities is 3 hours.

Determine the base city for each crew so that' the sum of the layover times of all the
crews in non-base cities is minimized.

Timings of Flights from City X to City ¥

~ Flight number Departure time ~ Arrival time

(from City X) (to City Y)
101 6 a.m. 8 a.m.
102 10 a.m. 12 noon
103 3pm. 5 p.m.
104 8 p.m. - 10 p.m.
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Timings of Flights from City ¥ to City X

Flight number - Departure time Arrival time
(from City Y) (to City X)
201 | 530 am.: . | 7 am.
202 9 a.m. : 10.30 a.m.
203 4 p.m. 5.30 p.m.
204 | " 10p.m. - 11.30 pm.
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Unit 5 0 Theory of Games

Structure

5.1 Introduction

5.2 ’I’Wo-person Zero-sum games

5.3 Minimax criterion and optimal strategy

5.4 Saddle point, optimal strategies and value of game
5.4 Questions

5.1 Introduction

Many practical problems require decision-making in a competifivc situation, where
there are two or more opponents with conflicting interests and the action of one opponent
depends upon the ones taken by the others. For example, candidates for an election,
" advertising and marketing campaigns by competing business firms, countries involved
in military battles, etc. have their conflicting interests. In any competitive situation the
courses of action available to a competitor may be finite or infinite. A competitive
situation with a finite number of competitors each having a finite number of courses of
action is termed as a “competitive game”.

A competitives game has the folllowing properties—
(a) There are a finite number of competitors, also known as players. .

(b) Each of the competitors has available to him a finite list of possible courses
- of action or strategies; this list may not be same for all players.

(c) A play of the game results when each of the players chooses a course of
action from his list. The choices are assumed to be made simultaneously so
that, no player knows his opponents’ choices until he is already committed.

(d) The outcome of a play is affected by the particular set of courses of action
* adopted by the players. Each outcome determines a set of payments (posmvc ;
negative or zero), one to each player.
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- 5.2 Two-person zero-sum games

Games having the “zero-sum” character, i.e., the algebraic sum of the gains and
losses of all the players add up to zero, are called zero-sum games. Otherwise, they are -
referred to as nonzero-sum games. Zero-sum games with two players are called two-

-person zero-sum games. In such a game the gain (loss) of one player is exactly equal to
the loss (gain) of the other player.

The assumptions gaverning a two-person zero-sum game will, therefore, be as
follows—: ' ' :

(a) There are exactly two players, with opposite interests.

(b) The number of courses of action available to each player is finite. The list
may not be same for the two players.

~ (c) . For each course of action selected by a player there results g payoff.

(d) For each play of the game, the amount won by a player is exactly equal to
. the amount lost by the other.

Let m and n denote the number courses of action available to the two players, say
A and B respectively. The respective payoffs may be summarized in a m X n matrix
usually referred to as the payoff matrix of the game. This payoff matrix gives the payoffs
to one of players, say A, corresponding to the different courses of action adopted by the
two players. A positive payoff will mean gain to A and loss to B, while a negative payoff
will mean loss to A and gain to B. A typical payoff matrix in terms of payoffs to A will
be as follows :

Table 5.1°

PlayerB -
B, B, ... B,
A ¢y Cin . G
A, Cyy Cop  vewres Cyp
Player A
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Here {A|, A,, ..., A, } are the courses of action of player A, {B,,B,, ..., B,} are the
courses of action of play B, and ¢;; = payoff to A when A adopts the course of action A;
and B adopts B}., i=1,2,..mandj=1,2,..,n.

Then, - c;; will be the payoff to B when A adopts A, and B adopts B, i =1, 2l
J= 1,2, vy

Example 1. Consider a two-person coin tossing game. Each player tosses an
unbiased coin simultaneously. Player B pays Rs. 7 to player A if { H, H} occurs and Rs.
4 if {T, T} occurs. Otherwise, A pays Rs. 3 to B. Here H = head, T = tail. This will be a
zero-sum game since the winning of one player is the loss of the other. The payoff
matrix in terms of payoffs to player A will be

PlLyer B
. H- 7
Player A H 7 -3
T -3 4
The payoff matrix in terms of payoffs to player B will, therdfore, be
H v s |
Player B H -7 - 3
T 3 -4

Stratesgy : A competitive game is sometimes referred to as a game of strategy.
When we talk of the strategy adopted by a player in a competitive game we mean a set
of rules which tells the player course of action he should take in a play of the game.
This strategy may be of two kinds—

(a) Pure strategy : A pure strategy is a decision rule which tells the player, in
advance of all plays, to choose a particular course of action for each play. A pure strategy
is identified by the name representing the course of action chosen.

(b) Mixed strategy : A mixed strategy is a decision rule which tells the player,
in advance of all plays, to choose a course of action for each play in accordance with
some probability distribution. For example, if a player has two courses of action but
chooses a particular one for each play, then he has a pure strategy. But for each play if
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he flips an unbiased coin to decide upon which course of action he should take, he has
a mixed strategy.

By solving a game we mean finding the “optimal strategies” for both players and
the corresponding “value of the game”. '

5.3 Minimax criterion and optimal strategy

The “minimax criterion of optimality” states that if a player lists the worst possible
outcomes of all his potential strategies, he will choose that strategy to be most suitable
for him which corresponds to the best of these worst outcomes. Such a strategy is called
an “doptimal strategy”.

Example 2. Consider the following two-person, zero-sum game matrix which
represents payoff to the player A. Find the optimal strategy, if any.

B

I | I

=3 2 | 6
AT ) 0 )
' il T

Solution : The pléycrA wishes to obtain the largest possible ‘c;; by choosing a
course of action from his list (I, II, III) while the player B is determined to make A’s gain
the minimum possible by choice of a course of action from his list (I, II, III). The player
Ais called the maximizing player and B the mlmmnzmg player.

If the player A chooses the 1st course of action, then it could happen that 'the
playcr B also chooses his 1st course of action. In this case the player B can guarantee a
gain of at least — 3 to player A, i.e.

N min {-3,-2,6} =-3
- Similarly, for other choices of player A, i.e., Il and III, B can force the player A to
get only 0 and - 4, respectively by his proper choices from (I, II, III), i.e.,
' min {2, 0, 2} =0 and min {5, -2, -4} =—4.
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The minimum value in each row guaranteed to the player A is indicated by ‘row

minimum’ in table below. The best choice for the player A is one which maximizes his

. least gains —3,0,—4, and as max {-3,0,—-4} =0, the optimurh course of action which
assure at most the gain 0 is IL.

Table 5.2
B
I I M | Row minimum
=2 <2 & ] .-8
A T 2 0 2 0 Maximin
111 5 -2 -4 valpe v)=0
Column ‘ 5 0 6 -4

maximum
Minimax Value (3,) =0

In general, the player A should try to maximize his least gains or to find out
Iy, o ity =i iy} o)

Player B, on the other hand, can argue similarly to keep A’s gain the minimum. He
realizes that if he plays his 1st pure strategy, he can loose no more than 5 = max {-3, 2,
5} regardiess of A’s selection. Similar arguments can be applied for remaining pure
strategies II and III. Corresponding results are indicated in the table by ‘column
maximum’. The player B will then select the pure strategy that minimizes his maximum
loses. This is given by the II and his corresponding loss is given by

min {5, 0,6} =0

The player A’s selection is called the maximin strategy and his corresponding
gain is called the maximin value or lower value (3,) of the game. The player B’s selection’
is called the minimax strategy and his corresponding loss is called the minimax value
or upper value (v) of the game. The selections made by player A and B are based on the
so called minimax (or maximin) criterion. It is seen from the governing conditions that

- the minimax (upper) value y, is greater than or equal to the maximin (lower) value y (see
Theesem). In the case where equality holds i.e., - |
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max mjn ¢; = maxminc; Or, v= v , -
i J J i '

the conésponding pure strategies are called the optimal strategies and the game is
said to have a saddle point. It may not always happen as shown in the following example.
Note : For convenience, the mlmmum values are shown by ‘()’ and maximum values by

[]1in the table.

Theorem 1. Let (¢, ) be the payoﬂ' matrix for a two-person zero-sum game. Ifv
denotes the maximin value and j the mini#max value of the game 3 > v. That is

mjn[max {cy }] > maxlimm {c,j }]_ :
i i ¥ J
Proof. We have m?x {c;}2¢; forany j, and mjin Aeyls ¢y for any i.
~ Let the above maximum be attained at i = i* and the minimum be attained at j =
j*. So Cinj > €y > Cyjn. for any i-and j. ' :
This implies that

n'njin{ci* h2ey 2 m::ax{;c,j.} for any i and j.

Hence m}n[m;flx{cg }] 2 m?x[m}n {Cg}], or y2v.

5.4 Saddle point, optimal strategies and value of game

Some Deﬁmtlons

Saddle Point : A saddle pointof a payoff matrix is the position of such an element
in the payoff matrix which is minimum in its row and maximum in its column.

Mathematically, if a payoff matrix {c,.j} is such_that
max[rﬁin{'cg }] = m_in[max{cﬁ }:I =c,,(say),
j i J i i

then the matrix is said to have a saddle point (5 s). o

Opﬁmal strategies. If the payoff matrix {c, j} has the saddle point (7, s), then the
players (A and B) are said to have their r-th and s-th strategies, respectively, as their

129



optimal strategies.

Value of game. The payoff (c,) at the saddle point (r, s) is called the value of |
game and it is obviously equal to the maximin (v) and minimax value (v) of the game.

A game is said to be a fair game if v = v = 0. A game is said to be strictly
determinable if v = v.

Note : A saddle point of a payoff matrix is, sometime, called the equilibrium point of.
the payoff matrix.

In Example 1, v = v = 0. This implies that the game has a saddle point given by
the position (2, 2) in the payoff matrix. The value of the game is thus equal to zero and
both players select their strategy as the optimal strategy. In this example, it is also seen
that no player can improve his position by choosing any other strategy.

Rules for determining a saddle point :
1.  Select the minimum element of each row of the payoff matrix and mark
g them by ‘()’.
2. Select the greatest element of each column of the payoff matrix and mark
them by ‘[]’. :

3. . If there appears an element in the payoff ‘matrix marked by ‘O’ and ‘[]"
both, the position of that element is a saddle point of the payoff matrix.

Solution of games with saddle points : _

To obtain a solution of a two-person game, often referred to as a rectangular
game, one has to find out : | : -

(i) the best strategy for player A;

(i) the best strategy for player B, and

(iii) the value of the game (c,,).

It is already seen that the best strategies for players A and B will be those which
correspond to the row and column, respectively, through the saddle point. The value of

the game to the player A is the element at the saddle point, and the value to the player B
will be its negative.

Example 3. Player A can choose his strategies from {A,, A,, A;} only, while B
can choose from the set (B,, B,) only. The rules of the game state that the payments
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&should be m’ade_i[-n accordance with the sel%cti on of strategies :
selected made . selected - made
LA,.B) PaverApaysRe.1 | (A.B) | Player BpaysRs. 4
to player B “to player A
(A,,B,) Playgr ‘BpaysRs.6 | (A, B)) Player A pays Re. 1
S to player A to player B
(A, B,) Player BpaysRs.2 | (A, B) _Player A pays Rs. 6
to player A - toplayerB

What :.atrategi'es should A and B play in order in order to get the optimum benefit
of the play? '

- Solution : With the help of above rules the following payoff matrix is constructed:

layer B
Bl ' B2
A | -1 '
A A, 2
A, 1 16 g

In Table 5.3 the payoffs marked ‘() represent the minimum payoff in each row
and those marked ‘[]’ represent the maximum payoff in each column of the payoff
matrix. o

Obviously, the matrix has a saddle point at position (2, 1) and the value of the
game is 2. ' . _

Table 5.3
Player B
B, B,
A | D | [6]
A, | 2] 4

A, 6]

131



Thus, the optimum solution to the games is given by :

(i)  the optimum strategy for player A is A,;

(i) the optimum player A strategy for player B is B, : and

(iii) the value of the game v is Rs. 2 for player A and Rs. (- 2) for player B.

Also, since v = 0, the game is not fair, although it is strictly determinable.

Example 4. The payoff matrix of a game is given. Find the solution of the game

- to the player A and B.

B

1 [ o|lm|wv]| v
1 [ -2 0| 5 | 3
n|[ 3] 2]t ]27] 2
m|-4]|-3| 0-2| 6

v 5 3 -4 2 -6

Solution : First find the saddle point by putting first bracket around each row
minimum and putting square bracket around each column maximum.

The saddle point thus obtained is shown in Table 5.4.

_ Table 5.4 -
Optimum strategy for B

1 11 1 1V IV

oo 1 o B[ 3| -2

3 2 [(.l)] 2 2. 1

-4 | -3 0 ~2 6] | -4

!
Optimumstrategy I
for A | I
I
v

B B |[CH] 2 o] -6

5 3 1 5 6

Maximin value (v) = 1

Column maximum

Minimax value (v) =1
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Hence, the solution to this ngme is given by
(i) the best strategy for player A is II;
(ii)) the best strategy for pl ayér B is III; and
(iii) the value of the game is 1 to player A and - 1 to player B.

Example 5. Solve the game whose payoff matrix is given by

- 1 II 11
1 = | 15 =2
I < b A
I =if 20 =8

Solution : Table 5.5 may be formed as explained earlier.

This game has two saddle po'ints in positions (1, 1) and (1, 3). Thus, the solution
to this game is given by.

(i) the best strategy for the player A is [;

(ii) the best strategy for the player B is either I or III, i.e., the player B éan use
either of the two strategies (I, I1I); and

(iii) the value of the game is 2 for player A and — 2 for player B.

Table 5.5
I 11 I Row minimum
I W= 1--38. | &30 |- Maximin value () =—2
A Il = (- 6) =ik | =2
m | -5 [20] | 8 | -6
Column max -2 20 -2 -8

Minimax value (v) = — 2.
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5.5 Questions

1. Whatis a game? Explain the following terminologies in relation to game
theory : (a) players, (b) strategy, (c) minimax principle, (d) saddle point, (e) value of a
game, (f) two-person zero-sum game. ;

2. Two machines-tool companies A and B, competing for supplying a CNC
lathe to a new factory. Each company has listed its alternatives/strategies for selling
machine tools.. The strategies of company A are listed below : '

(a) giving special price
(b) giving 15% worth of additional tools
(c) supplying some work holding device free of cost -

The strategies of company B are as follows :
(a) giving special price
(b) giving 20% worth of additional tools

(c) giving free training to the users of the organization which is buying
the machine. The estimated gains (+)/losses () in lacs of rupees of company A for
various possible combinations of the alternatives of both the companies are summarized
» in the following table. Find the optimal strategies for the companies.

Coinpany B
1 2 3
1 40 45 50
Company A 2 20 45 60
| 3 | 25 30 30

3. Find the optimal strategies of the players in the following game :

Player B
1 3 = 4
1 30 20 40
Player A 2 55 50 60
3 60 30 40
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Unit 6 Q Project Management : PERT and CPM

St_'ructure

6.1 Introduction

6.2 Some Basic Concepts

6.3 Calculation of the Critical Path

6.4 Determination of the Floats or Slacks
6.5 Critical Path Method (CPM)

6.6 PERT |

6.7 Questions

6.1 Introduction

In Operations Research networks play an important role as quite often the problem
of determining an optimal solution can be looked upon as the problem of selecting the
best sequehce of operations out of a finite number of available alternatives that can be
represented as a network. Network scheduling is a technique used for planning and
scheduling large projects in the fields of construction, maintenance, fabrication,
purchasing, computer system installation, research and development designs etc. The
technique involves minithizing trouble spots, such as production bottlenecks, delays
and interruptions, by determining critical factors and coordinating various parts of a
job. | |

There are two basic planning and controlling techniques that use a network to
complete a predetermined project or schedule. They are the Program Evaluation and
Review Technique (PERT) and the Critical Path Method (CPM). Several variations of
these have also been developed, one such variation being the Review Analysis of Multiple
Projects (RAMP) which is useful in guidi'ng the “activities” of several projects at one
time.
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6.2 Some basic concepts

1. Activity : An activity is a task, or part of work to be done, that consumes time,
effort, money or other resources. In a diagrammatic representation, an activitiy is
represented by an arrow in the direction of progress of the project.

(a) Critical activity : An activity is said to be critical if a delay in its start
causes a delay in the completion time of the entire project.

(b) Non-critical activity : A non-critical activity is such that the time the time
between its earliest start and its latest completion dates (as allowed by the project)
(defined later) is longer than its actual duration. In this case the non-critical activity is
said to have a slack or float time. '

2. Node : The specific point of time at which an activity begins or ends is called a
node. The starting time point is called the tail node and the endidng point is the head
node. A node is generally represented by a circle.

3

0
Node

Nodes may be numbered in a network.

3. Network : A network is a graphical representation of a project’s operations and is
composed of activities and nodes.

Network

In a network, no two activities should be identified by the same head and tail
nodes. '

Critical path : The dcritical path is the shortest path through a network. It gives
a chain of critical activities that connect the start and end nodes of the network. The
critical path is generally denoted by double lines in a network.
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. Precedence relationship in network : A project may be considered as a series of

activities in which an activity may begin only after another activity or activities have
finished. In a network schedule this type of relationship is called precedence relationships
and is represented by inequality. For example, X < Y denotes that the activity X must.be
completed before the start of activity Y.

Two or more activities may be performed concurrently. For example in the figure
below activities X and Y have the same nodes.

X
| Vo,
Y ' .

In such a situation a dummy activity is introduced either between X and one of the
nodes, or between Y and one of the nodes. This results in the following representation—

W oso—X  s30—2>
XTD
(0]

Here D is the dummy activity introduced. As a result, activities X and Y can be
identified by unique head nodes. It should be noted that a dummy activity does not

consume any time or resource.
Note : Dummy activities may also used to establish correct precedence i‘elalion_ships.
For example, suppose in a certain project activities A and B precede C while E'is preceded
by B only. Figure 1 represents the incorrect presentation since the diagram implies that
E is preceded by both A and B. Figure 2 shows use of dummy activity D for the correct

representation.




S — x5

>
Fig.: 2
To ensure the correct precedence relationship in a network, one should be aware
of the following for each activity—
(a) which activities must be completed immediately before thé activity;
(b)  which activities must follow the activity; '
(c) which activitiés\ must occur concurrently with the activity.

Example 1. Construct the network comprising the activities A, B, C .... and L
~ such that the following precedence relationships are satisfied—

(i) A Band C, the first activities can start simultaneously.
(i1) A B<D.
(iii) B<E, FH.
(v) FC<G.
) EH<LI.
) C D EJ<K.
(vii) K<L. _
(viii) 1, G and'L aré the terminal activities of the project.
Solution.
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- Dummy activities D, and D, are used to establish correct precedence relationship.
and D, is used to 1dent1fy activities E and H with unique end nodes. The nodes are
numbercd such that their ascending order indicates the direction of progress in the
project.

6.3 Calculation of the critical p'ath

The critical path calculatnon consists of two phases called forward pass and
backward pass. _ -
F orward pass : Here for each activi ty we calculate the earliest starting time (ES)
of the activity, i.e., the earliest possible time when the activity can begin, assuming that
all its predecessors also start at their ES.

~ Let the project start at time 7= 0. Let ES be the earliest start time of all activities
emanatmg from node i. If i = O be the starting node then convcnnonally we take ES, =
0. Let L be the duration of an activity (i, j). (Activity (i, j) means an actmty with tall
node i ancl head node j). Then, for node j,
ESj = {ES, + -tU}, for all (i, j) activites defined, where ES;=0
This also defines the earliest finishing time qf an activity ending at the node j.

ES/sare rcpresented in the network enclosed in squares ([]) alongside the nodes.

Backward pass : Here for each activity we calculate the latest finishing time, or .
latest completion ti me (LC). This also defines.the latest start- time of an activity starting
from a node. Let LC, be the LC for all activities with head node i. If i = n, the terminal
node, then LC, =ES,. For each node i,

LG = mjin{LCj —1;}

for all (i, j) activities defined. LC,’s are usually represented in the network enclosed

in triangles A alongside the nodes. )

The critical activities can now be identified. An activity (i, /) will lie on the critical
path if it satisfies the following three conditions :

(i) ES,=LC,
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(ii) ES LC
(iii) ES ES LC LC LC-t

All these conditions show that there is no f_ioat or slack time between earliest start
(finish) time and the latest start (finish) time of the activity. In the network, these activities
are characterized by the numbers in 1 and A being the same at each of the tail and head
nodes and that the difference between the number in Q (or A) at the head node and the
number in O (or A) at the tail node is equal to the duration of the activity.

6.4 Determination of the Floats or Slacks

For any activity (i, j) the earliest start time is ES,, the earliest finish time is ES;, the
latest start time is LC; and the latest finish time is LC Then the total float or slack
available for the activity is given by

TF, = LC,~ ES;= LC;~ ES,,

6.5 Critical Path Method (CMP)

The critical path method for finding the critical path in a given project may be
summarized in the.following steps :

Step 1. List all the activities (jobs) and draw the network.

Stép 2. Indicate the activity times in parenthesis above the arrow representing the
activity besides the name (generally given by an alphabet) of the activity.

Step 3. Calculate earliest start time and earliest finish time for each node and put
it in (J against its tail node. Also calculate latest finish umc for each activity and put it
in A agamst its head node.

Step 4. Prepare a table which includes an activity (i, j)’s normal time, earliest
times and latest times. Determine the slack or float for each activity.

- Step 5. Note down the critical activities with zero slack and connect them with
starting node and ending node in the network using double lines. This gives the critical
path.
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Example 2. A project consists of a series of tasks labeled A, B, ..., H, 1. Using the
notations W < X, Y to mean that X and ¥ can not start until Wis completed, and X, ¥ <W
to mean W cannot start until both X and Y are completed, construct the network diagram
having the following constraints : - B '

A<D,E;D<F;C<G;G<H;F;G<l.
Find also the minimum time of completion of the pro;ect when the time in days
of completion of each tasks is as follows :
Tsk : A B C D E F G H I
Time : 23 8 20 16 24 18 19 4 10

Solution : Using the given constraints, the resulting network is shown in the
figure below. The dummy activities D, and D2‘ are introduced to establish the correct
precedence relationships. The nodes of the project are numbered in such a way-that
their ascending order indicates the direction of progress in the project.

To determine the minimum time of completion' of the project (critical path), we
compute ES; and LS, for each of the task (i, j) of the project. The critical path calculations
as applied to figure are as follows :

ES, =0
ES, =ES, +t,=0+20=20
ES, =ES, +1,=0+23=23

To obtain the value of ES,, since there are two incoming tasks (1,4) and (3, 4), we
shall have '

ES, =TI {ES;+1,)
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= max.{0 + 8, 23 + 16} = 39.

The procedure is repeated until ES, is computed for all j. Thus

ES; =M2X(ES, +1,) =max.{39 +0,20 + 19} =39

ES, = {Eﬁ’s‘ {ES; +t,s} = max. {39 + 18,39 + 0} = 57
ES; = ffzr};“s’% {ES, +1;} = max. {23 + 24,39 +4, 57 + 10} =67
The values of LC, are now bbtained, these are
LC, =EC,=67 '
LCy =LC,—1,=67-10=57

LCs = J’;I—-]é,I}{LCJ“ISJ} =min {570, 67 -4} =57

LC, =MN{LC,~1,} =min{57-0,57 - 18} =39
L, = mijl,{Lc._z3j} =min{39 - 16, 67 — 24} =23

LC, ={LCs~t,}=57-19=38

LC, = M {LC,~1,}=min{38 - 20,23 23,39 -8} =0.

To evaluate the critical nodes, all these calculations are put in the following table:

Table 6.1

Task Normal time Earlest time ' Latest time Stock
(i, )) . (‘g)' . ‘Start _ Finish Start Finish | available

ES, ES, LC; LC, TF;
1,2) 20 0 20 18 38 18
(1,3) = 0 2B 0 23 0
(1,4) 8 0 8 31 39 31
2,5) 19 20 39 38 57 18
(3,4) 16 23 39 23 39 0
(3,7 24 23 47 43 67 20
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Task Normal time Earlest time Latest time Stock
()] (tr.j) Start Finish Start Finish | available
ES, ES, ol B 1 IF,
@,5) 0 39 39 57 57 | 18
(4,6) 18 39 &l 39 57 0
(5,6) 0 9 39 51 | 57 18
G.7) 4 39 43 63 & |-
6,7 - 10 57 6l - 57 67 0

The above table shows that the critical nodes are for the tasks (1, 3), (3, 4), (4, 6)
and (6, 7). ‘

Critical path (denoted by the bold lines)

It is apparent from the above that the critical path comprises the activities (1, 3),
(3,4), (4, 6) and (6, 7). This path represents the shortest possible time to complete the
entire project. ; -

6.6 PERT

The network method discussed so far may be termed as deterministic in the sense
that the estimated activity times (i.e., times of completioﬁ of activities) are assumed to
be non-stochastic. A more realistic situation would be where activity times are random
variables following some probabilistic laws. Probability considerations are incorporated
by assuming that the time-estin:latc of each activity is based on the following three

values :
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t, = the optimistic time, which is the shortest time to complete the activity if
execution goes very well; " |

|
t, = the pessimistic time, which is the longest time to complete the activity, if
everything goes wrong;

1, = the most likely time, which is required if the execution is normal.

The range specified by the estimated optimistic and pessimistic times to and Iy
respectively supposedly must enciose every possible estimate of the duration of the
activity. The most likely estimate #,, need not coincide with the midpoint (z,, + tp)le and
may occur to its left or its right. Because of these properties, it is intuitively justified
that the duration for each activity may follow a beta distribution with its unimodal point
occurring atz, and its end points 7, and rp.'The figure below shows the three cases of the
beta distribution, which are (a) symmetric, (b) skewed to the right, and (c) skewed to
the left. :

—
—*

—
~—

(a) symmetric . (b) skewed to right

(c) skewed to left

The expressions for the mean ¢, and variance 6> of the beta distribution are
developed in the following way. 7, is taken to be the average of the mid-point (z, + rp)l2
and 2z, i.e., ' '
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=_[(r +tp)l2+2t ]-—[(r0+r +2¢ ]

The range (z,, t,) is assumed to enclose about 6 standard dev1at10ns of the
distribution, since 90% or more of any probability density function lies within 3 standard
deviations of its mean. Thus,

l‘ =1
Sy
6

It is now possible to estimate the probability of occurrence of each node in the
‘network. Let i, be the earliest time of node i. Since the times of activities summing up
to i are random variables, . is also a random variable. Assuming that all the activities in
the network are statistically independent, we obtain the mean and variance of J, as
follows. If there is only one path leading from the starting node to node i, E(u,) is given
by the sum of the expected times 7, for the activities along this path, and var(u,) is the '
sum of the variances of the same activities. Complications arise when more than one
_path leads to the same node. In this case to compute exact E(u,) and var(p,) one must
first develop the statistical distribution for the longest of the different paths. This task is
rather difficult in general and simplifying assumption is introduced that computes E(u,)
and var(u,) as . ; -

E(w) = ES,, var(u) = 2V,

where k defines the activities along the longcét path leading to node i and V,
denotes the variance of the k-th activity on this path.

Since W, is the sum of independent random variables (viz. the durations of activities
on path leading to node i), by Central Limit Theorem, W, is approximately normally
distributed with mean E(W,) and variance var(u,). Since W, represents the earliest
occurrence of node i, the node i will meet a certain scheduled time ST; (specified by the -
analyst) with probability

R EQ) _ ST, - E@,)
Jvar(,) — yvar(u,)
=P(z< D),

where z is the standard normal variate with mean 0 and variance 1, and

P, <ST) = P[
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ST; - E(W;)
Jvar(y,)

It is a common practice to calculate the above probability. Such probabilities
represent the chance that the succeeding nodes will occur within (ES,, LC)) durations.

D, =

Example 3 : A project is reprcsented by the network in the figure below and has
the following data :

Task A B C D E F G
Latest time 5 18 2 16 ‘15 6 7

Greatest time 10 22 40 20 25 12 12
Most like time 8 20 33 18 20 9 10

oo v =2 o
oL L e

Determine the following :

(a) expected activity times and their variance;

The earliest and latest expected times to reach each node;

(b) Thecritical path, and

(c) The probability of a node occurring at the proposed completion date if the-
original contract time of completing the project is 41.5 weeks.

Solution : (a) The expected activity time, 7, is calculated by using the three given
estimated times in the relation

.r 1,441, +1,
.6
The variance, 62, for the activities is calculated by the formula

2
0_2 - tp _Iaj.
6
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" The following table provides the required information regarding 7, and o2

Table 6.2
Activity ‘) bt i, o2
(1,2) 5 10 | 8 7.8 0.694
(1,3) 18 22 20 20.0 0.444
(1, 4) 26 40 33 33.0 5.429
2,5) 16 20 18 18.0 0.443
2, 6) 15 25 20 20.0 2780
(3,6) 6 12 9 | 90 1.00
4,5) 7 i2 10 9.8 0.694
(5,7 7 9 8 8.0 0.111
6,7) 3 5 4. 4.0 0.111

(b) T,or E{u}, the earliest e}ipectéd time for each node, is obtained by taking
the sum of the expected times for all the activities leading to the node. When more than .
one activity leads to a node i, the greatest of E{y,} is chosen. Thus, we have

E{u,} =0,
E{p,}=0+78=7.38.
E{u,} =0+20.0 =20.0,
E{,} =0+ 33.0 = 33.0,
E{us} =7.8+18.0=25.8, .
E{pg} = max.{7.8 + 20.0, 20.0 + 9.0} = 29.0,
E{p,;} =max.{33.0 +9.8,25.8 + 8.0,29.0 + 4.0} =42.8.
For the lateast expected times T, = E(L), we start with T, equal to T,=E(W for the

last node. Now for each path move backwards, subtracting the “¢,” for each activity
link. Thus, we have

T,,=E{L,} =423,

T, = E{L,} =42.8-3838,

T, =E{L}=428-80=348,

T, =E{L,} =42.8-9.8 =330,
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T,,=E{L,} =38.8-9.0=298,
T,,=E{L,} =min.{34.8 - 18.0, 38.8 - 20.0} = 16.8,
T, =E{L,} =min.{16.8 —7.8,29.8 —20.0, 33.0 -33.0} = 0.

(c) For the critical path, we calculate the slack time by taking the difference
between the earliest expected times and latest allowable times, that is, T. =T, - v
Once the slack times are known to us, the critical path-may determined by finding the
path with zero slack. The critical path for the problem under consideration is indicated
in the figure below by the dark double line. The following table gives the calculation for
T, T, and T, P

Table 6.3 ‘ _
Node i r, Ew}=T, | E{L}=7, | T, | Var{p}=0?

2 78 | 78 168 9.0 0.694
3 200 200 208 0.8 0.444
4 33.0 330 | 330 0.0 5.429
5 18.0 25.8 . 348 9.0 1.137
6 9.0 29.0 38.8 9.8 1.444
7 98 | 428 42.8 0.0 6.123

. Critical Path (denoted by bold lines)

(d) = The scheduled time of completing the project is 41.5 weeks. Therefore, the
distance, in standard deviations, of the scheduled time ST from T, is given by

D= ST—-E(u,) 415-428

_ e )
T Jvar(u) 46123
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where ST =41.5.
Therefore, we shall have
P{z=D,} =0.30

which is the area under standard normal curve bounded by ordinates at x = 0 and
x=0and x=0.52.

The physical interpretation of this is that if the project is performeg hundred times
under the same conditions, then in 30 occasions it will take 41.5 weeks or less to complete
the project. In other words, only 70 times the project will take more than 41.5 weeks for
completion.

6.7 Questions

1.  Define a“project’. Discuss the guidelines for constructing a project network.
2.  Define the following : (i) total float, (ii) free float, (iii) critical path.
3. Distinguish between PERT and CPM.

4. A construction company has listed down various activities that are involved
in constructing a building. These are summarized along with predecessor (s) details in
the following table : '

Activity Immediate
Predecessor (s)

A
B
A,B
C,:D
EB
E,G
H, G
LE

“~TZXQoMHEHU OS>
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Activity - Immediate

* . Predecessor (s)
K ' J,L
L _ A
M _ K

Draw a project network for the above project.

5. Tasks A, B, C, ..., H, I constitute a project. The notation X < ¥ means that
the task X must be finished before Y can begin. With.this notation,

. A<D,A<E,B<F,D<F,C<G,C<H,F<I,G<I

Draw a graph to represent the sequence of tasks and find the minimum time of
completion of the project, when the time (in days) of completion of each task is-as
follows : : - ' A

. @ Task: A B C D E F G H I
Time : 8 10 8 10 16 17 18 14 9

) Task: A B C D E F G H I

Time : 5 9 14 4 3 10 19 12 10
6.  Given the data below find the following :

(a) The expected task times and their variances. _

(b) The earliest and latest expected times to reach each node.

(c) - The variances of the earliest node times.

_ (d) The earliest and latest expected times to complete each task and the
variances of the earliest times. :

(e)' The probabilities that each task will be completed on schedule.

Task . A B C D E F

Least time 8 14 16 - 24 28 18.5
Greatest time 14 26 22 36 46 21.5
Most likely time 0 20 20 30 36 20
Scheduled completion time 20 20 40 80 80 100

Precedence relationships : A, B.can start immediately : A< C, D; B <C,D,C<E,
D, E<F. - :

150



Unit 7 O Queuing Theory ‘

Structure

7.1 Introduction

7.2 Queuing System’

7.3 Classification j)f a Queuing System

7.4 Kendall’s Representation of Queuing Models

7.5 Queuing System with State Dependent Mean Arrival and Service Rates
7.6 Non-Poisson Queuing Systems

7 4 : Questions

7.1 Introduction

A queue or a waiting line is acommon phenomenon in everyday life. For example,
patients waiting at a doctor’s clinic, persons waiting at a railway booking office, machines
waithing for repair, ships waiting to be unloaded in the harbour and letters waiting to be
typed all form queues. In queuing theory the individuals coming for service are called
customers and those rendering service are called servers or service facilities.

The study of queues finds importance mainly in the fields of business (banks,
supermarkets, booking offices), industries (production lines, storage, servicing of
machines), engineering (communication networks, computers), transportation (airports,
harbours, railways) and everyday life (elevators, restaurants, barber shops). The primary
concern in such a study is to design and plan service facilities in such a way that
congestion is minimized and the economic balance between the cost (or time) of service
and the cost (or time) associated with waiting for service is maintained.

7.2 Queuing System -

A queuing system comprises of customers arriving at a service station for certain
service which is rendered by one or more servers. If an arriving customer finds all the
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servers busy he may wait in a queue. As soon as a customer is served, he departs from
the system.-

Customers arriving to the system may be classified as—(a) patient customers,
and (b) impatient customers. A patient customer is one who decides to wait no matter
how long the queue or the waiting time is. An impatient customer, on the other hand, -
gets dissuaded by the huge queue length or ]ong waiting time. The different types of
impatient customers are as follows—

(i)  Anarriving customer on seeing a queue may leave. Such a customer is said
to balk. '

(i1)  An arriving customer may join the queue, but become impatient and leave
after same time of waiting. Such a customer is said to renege.

(ili) If there be two or more parallel queues, a customer may shift from one
queue to another which is moving faster. Such a customer is called a jokey.

7.3 Classification of a Queuing System

A queuing system is classified by the follows factors—

1.~ The arrival (or input) process : This defines the pattern of arrival of
customers to a queuing system which is generally governed by some probabilistic law.
Customers may arrive one by one orin fixed or variable batches. The latter is referred to
. as bulk arrival.

If the arrival process does not change with time it is called a stationary input
process, else it is referred to as a transient input process.

“An arrival process is said to be Markovian when arrivals occur in a Poisson fashion,
i.e, customers arrive one at a time and the number of customers arriving per unit time
has a Poisson distribution with mean arrival rate A, which is independent of the customers
already in the system. For such a process the inter-arrival time of customers has a one-
parameter exponential distribution with mean 1/A.

2. Qutput process : The output process defines the mode of depzirturé of -
customers from the system after being served. It is characterized by the service time
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 distribution for a service facility. The output process is said to be Markovian when the
service time distribution is one-parameter exponential with mean service time 1/u,
independent of the number of customers in the system. Then the number of service
completions per unit time follows a Poisson distribution with mean service rate .

3. Queue discipline : It is a rule by which customers are selected from a
queue for rendering service. The most common queue discipline is “first come, first
served” (FCFS) or “first in, first out” (FIFO) in which customers are served in order of
“their arrival. Other queue disciplines are “last come, first served” (LCFS) or “last in,
first out” (LIFO) where the last arrival is served first, “selection in random order” (SIRO)
where a customer is randomly selected from the queue for service, and selection by
priority in which service preference is given to a cutsomer over some other customers
in terms of certain factors like age, sex, importance, etc.

Under priority discipline service may be of two types—pre-emptive and non-pre-
emptive. In pre-emptive service, when a high priority customer arrives the customer
being served is removed and service is rendered to the high priority customer. On the
other hand, in non- pre-emptive service, the high priority customer is given service only
after service completion on the customer who was being served when he arrived.

4.  Service mechanism : This refers to the number of server or service points
to be maintained at a service station and their arrangement. The service points may be -
arranged in parallel or in series. In parallel arrangement, identical service is rendered
by the different servers or service points. Forsuch an arrangement, customers may wait
in a single queue till a server becomes free as in a barber’s shop or they may form
separate queues in front of the different service points as in a supermarket. On the other
_ hand, in a series arrangement a customer has to pass successively through all the service
points before service is completed. Such a situation is often faced in public offices
where different parts of a work are done at different service counters.

7.4 Kendall’s Representation of Queuing Models

A queuing model is generally represented in the following symbolic form :
a/b/c/d/ e,

where a = input (arrival) process
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output process

il

number of servers in parallel

Ml

b
c
d = capacity of the system

I.

e queue discipline.

_ Representation by the first three symbols viz. a/b/c was introduced by Kendall. a
and b may be any one of the following :

M = Markovian

E, = K-Erlang
G = General
D = Deterministic

SM = Semi-Markovian

Thus, a queuing system M/M/2/eo/FCFS will mean the input and output processes
are Markovian, the number of servers is 2, the system is of infinite capacity and the
queue discipline is FCFS. Generally, if the system is of infinite capacity and FCFS is
the queue discipline, the queuing system is reresented by only first three symbols, viz.
a/b/c. :

Notations : The following notations will be used in connection with a queuirg system—

n =no. of customers in the system (i.e., no. of customers in the queue + no. of
customers being served)

m  =no. of customers waiting in the queue -

c = no. of parallel service points

P (1) = probability that there are n customers in the system at any time point
P =steady-state (i.e., time independent) probability that there are n customers

n
in the system.

(We have p, = lim PH(:))
[

E(n) = expected number of customers in the system in the steady state -

E(m) =expected number of customers waiting in the queue in the steady state
E{v) =expected time spent by a customer in the system in system in steady state
E(w) = expected waiting time of a customer in the queue in the steady state
E(n), E(im), E(v) and E(w) define the characteristics of a queuing system.

154



7.5 Queuing System with State Dependent Mean

Arrival and Service Rates

Let A, = mean arrival rate to the system when there are n customers in the
system ’ . ' '
', = mean service rate when there are n customers in the system
P_[anew arrival in (z, f + Ar) | n customers in the system at time 7] = A, At +0(A?)

_ (D

Pr[no new arrival in (¢, t + A7) | n customers in the system at time t] = 1 — A Az +

oAy . N ; _ .. (2)

Pr [a service completion in (1,1 + At) | n customers in the system at time 7] = W, At

+ 0(A?) : .. (3)

Pr [no service completlon in (t t + Af) | n customers in the system at time 1] = 1 —

H, At + 0(A?) : . (4)

_ Pr [ knew arrivals in (¢, t + At) | n customers in the system at time7] = O(At) for

k=2 : » .. (5
Pr [k service completions in (7, t + A?) | n customers in the system at time 1] =

O(A?), for k=2 _ : ... (6)

2 Ar—0
AI —» as At —0.

- Then, since arrival and service completion are independent of one another,

where

Pr (1 + Ar) = Pr [n customers in the system at time 7 + At]
= Pr [n customers in the system at time ¢ and no service completion
and no new arrival in (z, 74 A7)] + Pr{(n — 1) customers in the system at time # and 1 new
. arrival but no service. comp!etion in (t, 1 + Ar)] + Pr{(n + 1) customers in the system at

‘time 7 and 1 service completion but no arrival in (z, 1 + Af)] + 2 2 Pri(n — k + )

k=l s=1
customers in the system at time 7, and k new arrivals and s service completions in (7 +
An]. ' _ - B
 =Pa@) [1- A A+ OAN][L - R AL +0(AD] + P, (DA, _ At +0(AD)]

[1-p,_ At+0AN]+ P, (D1 =4, , At +O0(AND][K, , At + O(AN] + 0(AD).

155



=Pn(O[1 - (A, + n AN+ P,_ (DA, , At+ P, (D)W, At +0(A).

For n = 0, noting that the qucstidn of service completion does not arise when
there is no customer in the system, i.c., j, = 0, and number of customers cannot be
negative, we get

P(t+Af) =P (1) [1-AAf]+ P 0w A +0(A).
Hence. '
—ut' =1 oo : :
% 0 = fim - (n(fi))l Enl”pj o”‘f—wﬂp)d"J?"%‘” o)+ 1Py (@)

d ) =
2P, = fim P,(t+ A1) - Fy(1)
Ar—0 At

=— (7& + U )P, (1) + A,_P,_ )+ My l1'-“1,,”_1(1*), n=1

These equations are called the differential difference equations. To get the steady
state distribution of n We lake the limit as 7 —eo. Noting that P (t) — p, and P, (1) —ee..

we get from the above equations

0=—Agpo+ WP,
0=- O\‘n_+ )"u)pn +-}"n— Pt t Ry Py 21
or, Apy=Hp,

'Ob“-i-u")p”: }bﬂ"lpn—l +ul.'l+]pﬂ+1’ nzl.
Solving these equations we get
Aghi... A

1=l
P e Po,nn21 sl
no Koy By ’ )

Since , 2 p =1, we have

!J:O
© AcA A )
Po= [1 =3 J_L__.u]
n=1 Hohty-- By

Note : (1). For Markovian input and output processes the mean arrival rate and the

mean service rate are given by A and p, respectively, which are independent of the
number of customers in the system.

(2) For Markovian input and output processes (1) - (6) are satisfied.
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Special Cases :
1.  M/M/1/</ECFS (or simple M/M/1) Queuing System
Here A,=A,n>0
M, =M n>1

A
We define p = IL- which is called the traffic intensity or utilization factor.

We assume that p < 1. :
So the steady state distribution of the number of customers in the system is

_ Ay L
P,, =] pozp”po,nO

\ K
. (7Y S "
wherep, = 1+2[—] .=(Ean
L n=I\ N n=l
1 =
= {E} ,sincep <1
=1-p.
'Hence
pn= ('l _‘))p”"ﬂ'2 ]"
Therefore,
s 3 s L (-pp_ P
E =X =(1- L ( =
G ) = T =l A= =y

(i) E@m) = % (n—1)p,, since n=m + 1 as there is only one server

2p,

n=1

& 8 o
n=1 np"

B__
& 5 p
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(iii) Var(u) = % (n- E(u))zp”,

E 112 - {E(.*l)}2

p*
- (l ) rrzln 7 (1-p)?

2

_(d-pp(l+p) p
(1-p)  (1-p)
__P
(1-p)*
@iv) To find E(v) and E(w), we first find the waltmg time dlsmbutlon of an
arriving customer in the queue

Let ¢ () denote the c.d.fA of the time spent by a customer in the queue w z 0.
Since an arriving customer does not have to wait for service when there are no customer
in the system, we get i

¢,0)=P [w=0]
= P, [no customer in the system]
=p,
=1-p.

When a new arrival finds n customers in the system n 2 1, he has to wait in the
- queue till all the n customers are served. Hence, forz>0,

Pr[t<w <t+dt | n customers in the system when the new customer arrives]

= Pr[(n— 1) customers are served in time ¢] x Pr [one customer is served in
time dt]

e ()
- W ude =y, (t)dt, say.,

since the number of customers served in time ¢ follows a Poisson distribution
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with mean pi.

Therefore, fort > 0,
0. = Priw<1]

-0,0)+ X f;pnwn(r)dt

o o . e-p!'(#tf)u—l ) ,
=(-p)+ 2 [ (- py = T

- (ur'p)"”!
=(l-p)+ -1+p_[0 (E, (n-1)! ]dt]

‘ el 2 ue'p)
=(1-p)+ 1+pjﬂ”ewtﬂ>‘:°(" 1)'] }

=(1-p)+|1+p[ pe™ "’dr'J

1 = e‘l‘(l-{J)r
= l+4p{——M8M8M8
=" (1 = p) + i p{ l—p }

= pe—'”'(l ~P).

" So the distribution of waiting time in queue is

1=P;: t=0
=(pw(t) = i pe‘"““p”, t>0

Hence,
Ew) = | 1dg (1

= J: pu(l — p)e~ Ml -Pigy
wi-p)

= P '. '
w(l1-p)

j:xe‘*dx, putting x — u(l — p)
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Since, v = w + service time,

"E(v) = E(w) + mean service time

— Ip +l
p(l-p) M
_ 1
p(1-p)
E(w) and E(v) may also be found using Little’s Formula. By this formula we have
+ E : :
E(w) = ({1)
mean arrival rate
' E
E(w) = i

mean arrival rate

In case of M/M/I queuing system, the formula gives exact expressions for E(v)
and E(w).

Example 1 : A T.V. repairman finds that the time on his jobs has an exponential
distribution with mean 30 mins. If he repairs sets in the order in which they come in,
and if the arrival of sets is approximately Poisson with an average rate of 10 per 8 hour
day, what is the repairman’s expected idle time each day? How many jobs are ahead of
the average set just brought in? What is the average time spent by such a set in the
queue and in the system? :

Solution : It is given that

10 5 :
A = — == sets per hour
8 4

M= % X 60 = 2 sets per hour
A
p traffic intensity = — = 3
no8-
: 3
po =1- pP= g

Hence, idle time for a repairman in 8-hour day
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=%x 8 =3 hours.

L~p
' 1 1 B
= = =—=1= hours.
B = a=p " 2x378 .3 300
E(w) - E(v) - l—g——-;——-g— hour.

2.  M/M/C/e/FCFS (or M/M/2) Queuing System : .

Here
A, =Aforalln=>0.

Since the service time distribution is exponent with mean 1/u for each of the C
servers (i.e., mean service rate is i for each server), and for n < C, all the customers in
the system can be served simultaneously while for n > C, only C customers can be
served at a time, we have

B, =npifnsC
=Cpiftn>C.

- A
For this model, the traffic intensity is given by a which is assumed to be < 1.

From (1) we get the steady-state distribution of the number of customers in this
system as

. n A
=—, pyifn<C, wherep=—
Py n! PoTh1 ep |8
= C.’%”_‘" po, if n > &
~1 -1
C-1 " A_ oo n c—1 n € o0 o
P P (S P
=1+ X ==+% A Bl B i [“]
whefte po : ( n=1 1! p’ n=c C!C"v“ ) [u—o n! C! JEO c

-1
) [C‘ [ P—CJ
n-on! (C-1D)(C-p)
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Therefore,

n=c

(i) Em)=2X (n- O)p,, since a queue is formed for n = C and no. of customer?

in the queue is n — C.

)

-
C n
P s (P ;
=DPo “C,—IE:O H[E) , replacing n— C by n
G c? C+l
= pop_'"e" T =0 £ 3
C! C! (C-p) (C-HYC-p)

(ii) E(n) = expected queue length + expected number of customers arriving
during 4 service time — E(m) + E

(iii) By Little’s formula,

o o) |
(iv)  E{w) =expected time spent by a customer in the system -—-expectéd service
' 1
ti ' =E(Wv)-
ime ) m
(v) Expected noofidle servers =(C—1)p,+(C=2)p,+...+1p,_;
Cc-1 '
= 2 (C =X)D, -
x=1 i

~ (vi) Efficiency of the queuing model

_ Expected no. of customers being served -

Total no. of servers
@al
=1- El(c-x)er C.
x=

Example 2 : A super market has two girls ringing up sales at the counters. If the
service time for each customer is exponential with mean 4 minutes and if people arrive
“in a Poisson fashion at the rate of 10 an hour. '
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(@) What is the probability of having to wait for serviec?

(b) Find the average queue length and the average number of customers in the
system. !
(d) How long does an arriving customer have to wait for service?

Solution : This is a M/M/C queuing model with C=2

LU
60. 6 Permn
1
[ ~ A Pes minute
_h_16_2
Tpo1/4 3
Therefore, ,
¥ @
1.
0 a nglﬂ ?l! = . 2)
]_ -
3
={1+3+l}'_l
3-3 2
p,=ppy=1/3

1 .
(a) Prin 22]-1—p0-pl—g—0.167.

(b) Expected no of idle gitls = 2p, + 1p, = 4/3.
expected no. of idle girls _ 4/3
total no. of girls 2

Probability a girl is idle = -2/3-0.67.

Hence the expected percentage of idle time for each girl is 67%.

) 3

' 4
E = - =— =—=
3
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E(n) = E(n)+p.

42,
3 3 ’
4
(d) Ew )——E%=F?-8mmutes

3. . M/M/C/N/FCFS Queuing System
Here we assume C < N, since if C > N there will be no queue.
Since no customer can enter the system where there are N customers already in
the system, we have
A =Aifn<N
=0ifn2N.
And, _
H, =nuifns<N
=Cuifn>N.
So, the sdteady = - state distribution of the number of customers in the system is

n

p* A
£ =Zp01fnSC,wherep=;

n

n

C'E‘" z PyifC<n<N .
=0 ifn>N.
where _ _
c=1 1 N H' L
(nzo n! _C—§ } :
Then,

(i) E@m)= E (n- Op,
C u—C

= Po C‘E (n-0)2 e
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C N-C n
_ g P P
=Po X "(c)

C+l y_c n-=1
- P
=P :Eon(C]

C+1 y—
p N-C

C! 'ué:ﬂd_p'

' C+l N-C
-l )
=P g\ 5P

n P
' )", wh = —< 1
(P')", where p C<

= Po

. pC‘H d ]. - pN—CI"I'I
1-p

= Do cl *dF

> pc"‘(l—p'”‘c*'—(l—p')(N—c+1)p'-”“'”]
=Fro e

C! a-p)
' N
(ii)) EM@m) = Ec np,

N N
= np, + Em)+C ?Cp"

n=C
c-1 o
= E(m) + C;D(n -O)p,

n

c-1 p
= E(m) + C-p, Eﬁ(C—n) T
By Little’s Formula,

(i) E()y= Eif'),

where A’ = A(1 - p,) = mean number of customers arriving per unit time,

or, Ew)=E®W)-1/u.
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Notes:  (a) For C =1, N =, we get the M/M/1 queuing system.
(b) For N= oo, we get the M/M/C queuing system.

Example 3. In an automobile inspection station there are three inspection states.
Cars wait in such a way that when a stall becomes vacate the car at the head of the line
pulls up to it. The station can accommodate at most four cars waiting at a time. The
arrival pattern is Poisson with mean one car every minute during the peak hours. The
service time is exponential with mean 6 minutes. Find the average number of customers
in the system during peak hours, the average waiting time and the average number per
hour that cannot enter the station because of full capacity.

Solution : Here A =1 per minute
w— 24 per minute |
6.
C=3,N=1

Therefore, p— % =6

' -1
_(2p" 1 ;1-(p/C)
= E_+_ SR i (A
“ [Fon! ¢’ T1-pic
_ 1
1141
E(m) = 3.09 cars

n

c-1 )
E(n) = E(m) + C - py 3 (C—n)2= = 6.06 cars.
) n=0 n.
E(v) =. L) . 6'067 = 12.3 mins.
AMl-py) 1- 6 -

1141x3* x (3

Expected no. of cars per hour that cannot enter the station is

60Ap,, = 30.4 cars per hour.
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7.6 Non-Poisson queuing systems

Queuing models in which the arrival and / or departure patterns may not be Poisson
are referred to as non-Poisson queuing models.

M/E, /1/e=/FCFS (or M/E, /1) queuing system. .
In this model the service time has a k-Erlang distribution given by the p.d.f.

k k=1 —kut
ﬁz):ﬂi)l'—e-,wo,wo,bo.

The above distribution has mean 1/.

A k-Earlang distribution, for k a positive integer, can be looked upon as the
distribution of the sum of k‘independent exponential variables each with mean 1/kp.
Thus, service car!d be thought of as occurring in k phases, where the service time in
each phase has an exponential distribution with mean 1/kp. This’consideration is
oonvepicntly used to analyze the M/E /1 model.

‘Let n denote the number of service phases in the system. Each arrival adds »
phases of service to the system and each departure removes n service phases from the
system. Hence, if

P (t)=Pr [n service phaseslin the system at timé t1,
Then the difference equations are as follows—
P (1 +Af) = P (D[1 — Mt + O(AD][1 — kpAz + O(AD)]
+ P (OIAAIkRAL + P, , (.11 — MAT + O(AA][kpAT]
- + P, (O.A[1 - kuAr +0(AD], n > 1.
- And Py(t+An) =Py 0)[1- AAt + 0(AD] + P (t)[kuAt], n=0.

Here a negative subscript- indicates the term is zero.

Following the usual procedure of obtaining the differential-difference 'equations '
and then the steady-state difference equations, we have, writing the steady-state
distribution as {P, }, '

0=- A+ kWP, +kuP,  +AP, _, n2l.
and 0—AP,+kuP,.
Letting [Aku] = p, we have
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(l+p)Pn=an_k+Pn+l, neds - )

and pP,=P, _ wol(2)

To solve these difference equations, we make use of the generating function defined

by P(x) = Enpnx"_ . (3)
oy : :

Multiplying (1 )I by x" and then taking summation over n from 0 to e and using (2)
and (3), we get '

1
(1+p)P() - Py = px*P(x) + —[P(x) - Py].

This gives after simplification,

1-x4 7"
P() ='Pg[l—px(1_‘1 ’}

. . (l—xk) n
=P(}E(px)"[l o 1-k }

n=0
since(1-2)~'=l+x+22+
= P ;’.Op“(x + 124+ + .+ xRy

Now, forx=1

P(l)=P, );Dp"k"

o, 1= POL

or, P,=1-kp.

lk ]_.since P(H=1

P@)=(1 —kp)é}(px)ﬂu XL —x)n,
n - n .
" But, (1 —xtyr = _%(—D‘[J(x* )
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and (1 - x)' = f;(—nf[_ft]xf'
. j

-n fr+j—1
where[ .]=("1)"( : ]
J J

Thereforc,
m+j—1
P(x) =(1-kp) Z_Z(xp)"‘z( 1)( )(x i z[ ; ];
_(1 kp) E pm 2 2( 1):[ ][m'*"-if_l]xjﬁhm
m=0 j=0i=0 J _

Hence, P, = Coefficient of x" in P(x)
o mY(mtj-1) |
=(1-kp) Zp"(-1)| . : for j + ik + m = n.
ijk i J
Characteristics of the model

(i)  Average number of phases in the system E(np) is obtained as follows :

Since the system of difference equations is
(1+p)P,=pP,_,+ P

n+1? nzl

therefore, (1 —p) ElnzPﬂzp g;knzp + ZnZP

n=l

=p20(x+k)2Px+ 22@—1)2Py (wheren—k=xandn+1=y)

-pE(x +2xk+k2)P + 2@2 2y+ )P,

Cx=k

(since ; (y-17P,= Z 0~ 1°P)

—(1+p)2 P, +p2(2nk+k2)P + Z(—2n+1)P

n=1 n=0

o, 0= p[Zanp,,+k2Zp,,J+EP ZZnP

n=0 n=0 n=l1 n=l1
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or, 2(1-kp) E_:On.Pn=pk2—P0+ 1

since Y, P,=1and ZnP = X nP,

n=0 n=1 n=0

pk? +1-(1-kp)

By = ko)
_ k(k+1p
~ 2(1-kp)
. k(k+1)  A/ku _[kﬂ] A
L. - 2}~ 2 l-kAMkp L2 Jp=A

(i1)  Average waiting time of the p’hases in the system is given by
E(n,)

E(w )=

 (k+1) A
“L2u Jp-A
(1)) Average waiting time of an arrival is given by

E(w,)
k

(kﬂ) g
-\ 2k Ju(n-2)

(iv) Average number of units in the system is given by

Ew) =

E(n) =AE(v)=AEw)+ Ill._]

_[ﬂj » LA
A2k Jpu-A) e

(v)  Average queue length is given by

A
E(m) = E(n) - I’:
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[k +1) 5
T\ 2k (-2
(vi) Average time an arrival spends in the system is given by

1
EWv) =E —
) (w) + »

(k+l) A +1
RU-A)

Particular case : (M/E,/1/1/FCFS). This model differs from M/E /1 model in the
sense that in this case the capacity of the system is unity, i.e., there is no queue and the
system contains only one customer. '

Let the customer be in n-th phase of service, where
l<n<k.

Like in M/E /1, it can be casﬂy seen that the fol]owmg set of steady-state. dIfference
equations govern this model :

0——kuP + kuP e 1<n<k
0=—kuP, + AP, n=k
== AP, +kuP,, n=0
These equations provide us the following relations :
A
Pl = EP&
A
P, = ;]IPO

and PH,:PH forl<n<k.
For n =1,2,.. k-1, we see that

P, =P2=P3=...~Pk_1:Pk.
S A
Thus. P, ~ I}I Py ok 142} vy ki
To obtain the value of Po- we make use of the fact that,
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- or, P +2Pi=1

i=0

or, P,+ é"zklu Py=1

o, P, = :1+3_u§%j|ﬂ
(2]

Hence P, = %ﬁ

Example : A hospital clinic has a doctor examining every patient brought in for a
general check-up. The doctor averages 4 minutes on each phase of the check-up although
the distribution of time spent on each phase is approximately exponential. If each patient
goes through four phases in the check-up and if the arrivals of the patients to the doctor’s
office are approximately Poisson at the average rate of three per hour, what is the average
time spent by épatient waiting in the doctor’s office? What is the average time spent in
the examination? What is the most probable time spent in the examination?

Solution : We are given .
k=4, mean arrival rate =3 patients per hour
i.e., A =3 perhour.

1
Service time per phase = :1'-1-; = 4 minutes.

w = A = A patients per minute
4x4 16
4+1 3
s -(i) iy
a\a
= 40 minutes.
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; ; A 1 ;
Average time spent in the examination = — — 16 minutes.
: T

Most probable time spent in the examination (i.e., mode of the service time
distribution)

ikl

Tk

= 4_i =i=l2minutes.
4xl_6_ 1/4

M/G/1 queuing system : Here the arrival process is Poisson with mean rate A,

say while the service time has a general distribution with mean E and variance 62, say.

Below are the characteristics of the model :

3.
Bt 0 o e — e pal,
2(1-p) n
This is known as Pollaczek-Khinchin Mean Value formula. |
E(m)y = E(n) —p
_ l20.2.+92 '
2(1-p)
2.2, 2
Ew) = E(m) _ Ao’ +p
A 2A(1-p)
_ 3.2 . .3
By & E(n) _ Ao +p +l

A 2A1-p) u

Note : For exponential service time distribution with mean 1/y, we have 6% = 1/u%

Using this value of 62 we can obtain E(n), E(m), E(w) and E(v) for M/M/1 queuing
system.
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7.7 Questions

1. Atwhat average rate must a clerk at a supermarket work in order to ensure
a probability of 0.90 that the customer will not have to wait longer than 12 minutes? It
is assumed that there is only one server to which customers arrive in-a Poisson fashion
at an average rate of 15 per hour. The length of service by the clerk has an exponential
distribution.

2. At aone-man barber shop customers arrive according to Poisson process
with mean arrival rate of 5 per hour and his hair cutting time is exponentially distributed
with an average haircut taking 10 minutes. It is assumed that because of his excellent
reputation customers were always willing to wait. Calculate

(i) the average number of customers in the shop and the average number
of customers waiting for haircut;

(if) the percentage of time an arrival can walk right up to the barber’s
chair without having to wait; _
(i) the percentage of customers who have to wait prior to getting into the

barber’s chair. :
3. A telephone exchange has two long distance _dperators. The telephone
company finds that during the peak load, long distance calls arrive on these calls is

approximately exponentially distributed with mean length 5 minutes.
(a) Whatis the probability that a subscriber will have to wait for his long
distance call during the peak hours of the day?
(b) Ifthe subscribers will wait and are serviced in turn, what is the expected
waiting time?

4.  Ataport, let there be six unloading berths and four unloading crews. When
all the berths are full, arriving ships are diverted to an overflow facility 20 miles down
the river. Tankers arrive according to a Poisson process with a mean of one every 2
hours. It takes an unloading crew, on the average, ten hours to unload a tanker, the
unloading time following an exponential distribution. Find

(@) On the average, how many tankers are at the port?
(b) On the average, how long does a tanker spend at the port?
(c) What is the average arrival rate at the overflow facility?
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5. In acertain bank the customers arrive according to a Poisson distribution
with mean of 4 per hour. From Qbser\;ation on the teller’s performance, the mean service
time is estimated to be 10 minutes with a standard deviation of 5 minutes. It is felt that
the Erlang would be a reasonable assumption for the distribution of the teller’s service
time. Also, there is no limit on the number of customers entering the bank. Find (a) how
long a customer has to wait, on an average, to get service, (b) the average number of
customers waiting for service.
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Unit 8Q Inventory Control

Structure

8.1 Introduction

8.2 Inventory Decisions

8.3 Costs Involved in Inventory Problems
8.4 Classiﬁcﬁtion of Inventory Models
8.5 Different Inventory Models

8.6 Questions

8.1 Introduction

Inventory is any stock of goods that is maintained for the smooth and efficient
running of a business. For example, a business may have as inventory of raw material,
semi-finished goods or finished goods. It should be noted that any stock that is being
used to meet demand is not inventory. Inventory is an ‘idle’ stock which is stored in
order to meet future demand. Further, items to be stocked as inventory must be of some
economic value. Thus, Fred Hansmann right fully defined inventory as ‘an idle resource
of any kind provided that such resource has economic value”.

8.2 Inventory Decisions

For every item to be stored as inventory, the two main decisions to be taken by the
inventory manager are—(a) how much to order, and (b) when to order. In order to make
his decisions the manager has to take into account the different costs that are associated
with procuring and maintaining inventory. The decisions taken are such that the total
(expected) cost incurred is minimized, or the total (expected) profit is maximized. '
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8.3 Costs Involved in Inventory Problems

~ Thecosts involved in inventory problems may be brbadly classified as follows :
I.  Procurement Cost : This has the following components—

(i) Ordering cost. - This is the cost of placing at order. It may be
dependent or independent of the order quantity.

(ii) Set-up cost. _ This is the cost of setting up the production process
when items to be stored are produced and not
procured from an outer source. '

(iii) Purchase cost. Purchase cost per item may be affected by the order
' quantity owing to quantity discounts.

II.  Holding or Carrying Cost : The holding or carrying cost, whigch is associated
with holding goods in stock, is usually assumed to vary directly with the size of the
inventory well as the timé for which an item remains in inventory. The different
components of this cost are as follows—

(i) Storage cost. ' ‘This involves the rent of storage space for inventory
or depreciation and interest even if one’s own space
is used. '

(ii) Insurance cost. This is the cost of insuring inventory against
possible damage. . .

(iii) Handling cost. This is the loss associated with wear-and-tear owing

: ' to repeated handling of stock. _

(iv) Deterioration cost. This involves the loss due to deterioration or decay

_ of items during storage.

(v)  Obsolescence cost. Such a cost arises due to the items in stock going

out of fashion. '

IMI. Shortage Cost : The penalty cost that is incurred as a result of runing out of stock
(i.e., shortage) known as shortage or stock-out cost. In the case where the unfilled demand
can be satisfied at a later date (i.e., backlog case), this costs is generally assumed to
very directly both with the shortage amount and delay time. On the other hand, when
the unfilled demand is lost (i.e., lost sales case), shortage cost is proportional to the
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shortage quantity only.

An indirect shortage cost is the cost of a lost goodwill owing to the inability -
meet demand.

IV. Excess Cost : For items which can be used during a specified period only lil
newspapers, if the stock on hand is less than the demand, the excess stock may be of 1
value or may be possible to dispose off at a reduced cost known as salvage value. Tl
excess cost is the loss defined by the difference between the normal value and tl
salvage value. o

8.4 Classification of Inventory Models . B

The different bases for classification of inventory models are as follows—

(i)  Nature of knowledge about demand, When demand is completely know
the inventory model is called a certain
or deterministic model. On the oth
hand, if demand be a random variab
the model is known as a risk model.

(ii)  Number of orders that are placed If only one order be placed during tl
planning period or planning horiz(
(i.e., the time period over which ti
model is implemented), we call tl
model a static model. A dynamic mod
is one in which two or more orders a
placed during the planning period.

“(iii) Lead time. : Lead time is the time lag betwe

' placing an order and its delivery
supply. Lead time may be zero, whi
is in the case of shelf items, a consta
or a random variable.
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8.5 Different Inventory Models

I.  Deterministic Inventory Models : |
" Model 1 : Dynamic Certainty (or Deterministic) Model with no shortage and
zero lead time.

Let D be the known demand during a given planning horizon (O, T). Suppose
withdrawal from inventory is made at an uniform rate R = D/T and shortage is not
allowed. Further, lead time is assumed to be zero, which means that supply will be
instantaneous on ordering. '

Let :

C, = ordering cost per order, independent of the order quantity

C, = carrying cost per unit quantity per unit time.

The inventory policy is to place an order for ¢ units whenever the stock on hand
comes down to zero. Since demand occurs at a constant rate, the policy implies that

orders be placed at equidistant time points 0,2, 21, ..., (r— 1)t as indicated in the following
. figure.

N
\
" N\
q q q
2 t 2t -t =T
;o 'y , WY
Here r, called the order frequency, is givenby r= e Also, r = —, since shortages
' q
are not allowed. _
. ' : L 8
The inventory manager has to decide upon g and 7. Since r = - =—, we can write
: q

t= T_g . Thus the number of independent variables will be one. Let it be g. We now. find

q so as to minimize the total cost over (0, 7).
Let : ;
C(g) = total cost over (0, T)
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: = total ordering cost oﬁcr (O, T) + total carrying cost over (0, 7).
~ The total ordering cost over (0, 7) is given by the number of orders placed in (0
T) x ordering cost per order = rC = 2CS.
The total inventory carrying cost over (0, T) is determined as follows—

. - . . 1 .
The average inventory over (0, T) = -5 (maximum level + minimum level) =,.%'

- This is also the average inventory over each reorder interval, i.e., each interval of

length 7. So the inventory carrying cost over (0, T) -
= C, x average inventory X time for which 1nventory is carried

_ 4
=C1'2—T.
C(q) =2c +cir
q 2

- . dZ i
This is a strictly convex function of g since ? C(q) >0.

Hence optimal ¢ whi_ch'minimiz_cs C'(q)‘ is the unique solution to EC(q) = 0,

which gives - - . _
, 2DC;
qopt =9 GT *
This is known as the square-root formula. 9, 1 called the econmic order quantiy
(EOQ) or economic lot size (ELS) as it minimizes the total cost.
The minimum cost is therefore, given by

C(@,,) = \2DCsC;T

The opttmal reorder 1nterval is

Example : Novelty Ltd. carries a wide assortment of items for its customers. One
- item, in particular, is very popular. Desirous of keeping its inventory under control, a
decision is taken no order only the optimal economic quantity, for this item, each time.
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You have the following information. Make your recommendations :

Annual Demand : 16,00,00 units, Carrying cost : Re. 1 per unit, Cost per order :
Rs. 50. -
Determine the optimal economic quantity. |
Solution : Here T =1 year;
| D = 1,60,000 units
C;=Rs. 50 per order
C, =Re. 1 per unit per year

3DC,
SO, qop! = ClT

= 4000 units -
b = 0025 year

and minimum cost is '

C(q,,) = Rs. 4,000 per year.

Model 2 : Dyﬁamic Certainty (or Deterministic) Model allowing Shortages.

Model 2.is really an extension of Model 1 allowing shortages. In this model we
owever, consider the planning horizon to be of infinite length and it is divided into
sorder intervals each of length #. The costs involved are as follows :

C, = ordering cost per order.
C, = carrying cost per unit per unit time
C, = shortage cost per unit short per unit time.

Demand is assumed to occur at the uniform rate of R units per unit time and the
:ad time is zero. '

During each reorder interval a shortage of s units is allowed and it is backlogged.
he policy is to place an order for (g + s) units at the beginning of each reorder interval
1 order to bring the stock height to g.

As the planning horizon is of infinite length, we analyze the model over a reorder
iterval. The diagrammatic representation of the model over the reorder interval (o, £) is
s follows : ' '
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t, is the time point at which the stock on hand is zero. -
The decision variables here are g, S 41, Org,S, t,t whe_re t=t-1,
- Now,g=Rt, '
and s=R(t—to)=Rt,.

Hence, there are two independent decision variables. Let us take these to be 7, and
t,. The total cost over (o, ?) is given by ' -
C(ty, t,)  =ordering cost + carrying cost + shortage cost
= C + C,t, x average inventory over (o, ,))

+ C,(t —t,) x average shortage over (t,1—1).

q s
.=C+Cpt, “2-+ Cy(t~ ro)—2
R  Rf
= CS + Cl"-"'z'— + CZ"T
Since ¢ =t + t, is itself unknown, we consider the total cost per unit time. This is
given by o
' Iyt
crt, 1y = St
L+ 4

The optimal values of t, which minimize C*(1,, t,) satisfy

aC" (ty, 1,)

9C (15, 1y)
A, 0 and

- oy =0

which give
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CRt, = C¥(1,1,)... (1)
C,Rt, = C*(t,,1) .. (2)

L. G
Hence, D2
n G
- Gy
or, f s
o C[

Substituating this in (2) we get
| RGH | RC,t}

S e, +CRi2=C,
Cl ’

26, 2
RG,t} |
 =C+—5(C,+C)

T

which gives optimal ¢, as

L _ [2¢c
B9 RE(C+-C))
Hence optimal values of 7 , g and s are
G J 2G,C,

fo="c 0= RC(C + &)
3 3RC,C
"o=Mo =V e+ C)
g - [2RCC
om0 oG+ &)
and minimum cost is
2RC,C, G,
CHaoto =G G,

Particular case. -

C 3
If shortage cost C, is very large compared to carrying costC,,i.e., F] = (, then
: _ 2
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- Thus the model reduces to Model 1 with ,demand rate R = D/T.

Example : The demand of an item is uniform at a rate of 25 units per month. The
fixed cost is Rs. 15 each time a production run is made. The production cost is Re. 1 per
item, and the inventory carrying cost is Re. 0.30 per item per month. If the shortage cost
is Rs. 1.50 per item per month, determine how often to make a production run and of
what size is should be?

Solution : Here production rate is infinite so that the model is similar to Model 2.

The costs are

&
C, =Rs. 1.50 per item short per month

Cs = Rs. 15,00 per production run

;  =Re. 0.30 per item per month

b =production cost per item
~ =Re. 1.00 per item
R =25 units per month.
Total cdét per unit length of production run is, therefore,

e, f,) + bR, since Rt is the amount produced over (o, #), which defines a
production run. Here ¢, t,, t; have the same meaning as in Model 2. So,

Optimal length of a production run (i.e., of a reorder interval) = oo+t
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Production starts at A and stops at C. It again starts at £, At B and D stock on hand
is zero. In the interval AC inventory piles up at the rate of (K — R) items per unit time
while in the region CE stock diminishes at the rate R items per unit time. As such, the
relations among the decision variables s, S, 7, 1,, £, t, are . '

s=(K-R)t, =Rt
S=(K-Rt,=Rt,. - i
Hence out of 6 decision variables only two can be independently chosen. Let
these be 7, and t,. The length of a cycle, therefore, is

: K
r]+r2+t3+r4=—(tl+rz).

Since this itself is to be decided upon, in order to find 7, and r, we consider the
cost per unit Iength of the production-inventory cycle.
The cost over a cycle is set-up cost + total carrying cost + total shortage cost

Now, total carrying cost over a cycle = C\t, X average inventory in BC
' + Ct, X average inventory in CD.

S
=C,(1, + ‘3)?

_G(K-R)K1;
. 2R :
Similarly, total shortage cost over the cycle.= C,t, X average shortage in AB
+ C,t, x average shortage in DE

S
=0y, + t'4)5
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2C2Cs + : ZCICr
“VRC(C+Cy) \RG(C +C)

2(C, +C,)C,
2 RCGC; '

= 2.16 months.
And,

Optimal production quantity (i.e., order quantity) = g, + 5,

2R(C, +C,)C,
=JM = 54 items.

GG

t
Model 3 : Production inventory model.

Consider a production process which produce's items at a finite rate of K items per
unit time. The demand for the item occurs at an uniform rate of R items per unit time, R
< K. The costs involved are as follows—

Cg = set up cost per production set up
C, = carrying cost per item per unit time
C, = shortage cost per item per unit time.

The production inventory policy is as follows :

Production is started as soon -as there is a maximum shortage of s units. As a
result backlog diminishes and becomes zere in ¢, units of time. Stock now starts o
build up and reaches a maximum height S afterz, umts of time. At this point production
is stopped and demand is met from the accumulated stock. After t, units of time the
stock is completely exhausted and shortage starts piling up. When shortage or backlog

reaches a maximum level s, say after 7, units of time, production is again started. The
process is repeated over and over again.

The iterval between two consecutive starting points of production is called a
production inventory cycle. Diagrammatically, the inventory situation over a cycle will
be as follows :
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_ G(K-R)Kt}
- 2R
And the set-up cost is Cj.

Hence, the cost per unit length of a cycle is

s+icl(_f.(_,_-__@£§.+__cz (K I_{H(_rl
R 2 R

C(t,5) = 74

RC, +%(K - R)K# +%C,_(K - Rk}

R(t, + 1)

The optimal values of 7, and #, which minimize C(z,, £,) must satisfy

AC(tt) _ .4 3CHD) _ g
o, ot, ’
~ which give

C,(K-R)t, =C(,, t,)

C/(K-R)t,=C(t,t,)
(A

t,=—1,.

27 ¢ 1

Substituting this ip (1) we get

%(K—R)K(Cl + Ct2
1

o ;
=RC, + %(K—R)KCIC—ZZ 12+ (K~RKC;12
].

G . .
or, E.l" (C, + C)K . Ryt ?
2

=RC, + —(K R)KC %: 24 (K - RIKCyt,2
1

This givés optimal value of 1, us
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oo 2C.GR.
P7Y(C,+C)K(K - R)

and hence optimal value of z, is

t* _ 2C\CZR
27 V(G +C)KR
The optimal values of the other decision variables are, therefore,

- [2€¢GE -R)
P37V (G+CKR

" 2C'.C1(K B R)
CaTY (G C)KR

. [PCGRE-B
9 = #CK

. [2C,GR(K - R)
$ = (C,+GC)K

and the minimum cost is given by

2RC,C,C,R(K - R)
= K(C +C,)

Special cases .
(i) If in the model we take production to be instantaneous, i.e., k — o>, then

R
noting that X — oo we get
t',=0,17,=0
t*- . 2CC,(1 - R/K) . 2CG,
37V G(C + C)R G(C + G)R

I‘ _ 2Crcl(]- = R/K) — 2C.\‘Cl .
N 10, 2GR B IC *E,)R
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2 C‘J. Cl R

S* =Rt 3= —_CZ(CI @ Cz)
: 2C,G,R
¥ — * | —
S*=Rt4=yC(C + Cy)
and minimum cost = __ZRC_‘.C, C__Z_

This gives Model 2.
(i) In addition to K—> o if we take C, to be very large compared to C, so that.

£‘_' =0, then the model reduces to Model 1. This follows from the fact that Model 2
Lo

reduces to Model 1 for g‘- =0.
2

Example : The demand for an item in a company is 18,000 units per year, and the
company can produce the item at a rate of 3,000 per month. The cost of one set-up is
Rs. 500.00 and the holding cost of one uint per month is 15 paise. The shortage cost of
one unit is Rs. 20.00 per year. Determine the optimum manufacturing quantity and the
number of shortages. Also, determine the manufacturing time and the time between
set-ups. . _

‘Solution : Here Cs=Rs. 500, C, =Re. 0.15, C, =Rs. 20, K = 3,000 units / month,
R =18,000/12 units/month = 1500 units/month.

Optimum quantity manufactured = K(¢*, + %))
2C,(C, + G)RK
=\ CGG(K -R)
= 4,670 units.
No. of shortages is -
s* = (K - R)t*, = 193 units.
Manufacturing time = £*| + 1%, = 0.13 year.
Time between set-ups— t* + ¥, + t*; + 1*, = 0.26 year.
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Model 4 : Multi-item deterministic model with constraints.

So far we have considered inventory models for a single item. However, a more
realistic situation would be where the inventory manager stocks more than.one type of
item. Here we shall consider deterministic models for multi-item inventory.

Consider the following assumptions :

(i) nitems with instantaneous production and no lead time.

(i) R, is the constant uniform demand rate for the i-thitem (i=1, 2, ..., n).

(iii) C,? is the holding (or carrying) cost per unit quantity of the i-th item.

(iv) Shorta'gcs are not allowed (i.e., C,0 =0). ‘

(v)  C,@is the set-up cost per production run for the i-th item.

(vi) g, is the total quantity of the i-th item produced at the beginning of the
production-tun. .

We get the cost per unit time for the i-th item as :

C () =122CO Rt +'C3(")!r or C(q) =12CP gt + C,¥R/q,

Hence summing up these costs fori =1, 2, ey 1, WE get )

C= gi[l,QCl(‘)ql. + C,R/q;] (cost equatior.l) . .. (1)

To determine the optimum value of g, (i = 1, 2, ..., n) so that the total cost C is
minimum, we have the necessary conditions C/g,=0,i=1, 2, ..., n. Therefore, we get

ac o
9 = V26,0~ COR/q7=0

which gives g, = ,/2cf"’R /C? - . (2)

Since 820’89'1 > 0 for all g, the total cost C is minimum for g;’s given by (2).
Hence the optlmum value of g, is given by

~ g;=JeCPR /CP i=1(n.

We now proceed to consider the effect of limitations, viz. (i) limitation on
investment, (ii) limitation on stocked units, and (iii) limitation on warehouse floor space.

Model 4(a) : Limitation on investment

In this case, there is an upper limit, say M on the money to be invested on inventory.
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Let C, be the unit price of i-th item. Then

%.C,0q; <M. | (3
=

Now our problem is to minimize the total cost C given by the equation (1) subject
to the additional constraint above. In this situation, two cases may arise :

Casel.  When XC,0q",<M, q"; given by (2).
Jen 2

In this case, ¢"; given by (2) is the required optimal value of g,, i = 1(1)n.

Case2.  When 2C,%¢",> M, q"; givenby (2).
=1

Tn this case q",(i=1,2, .., n) given by (2) are not the required optimal values.
Therefore, we shall use the Lagrange’s multiplier technique as follows :
The Lagranglan functlon is

C(!) '
L=£[ O+ }(zcm )
i=1{ 2 q;

Here A is the Lagrange mulliplicr.

The necessary condition forL to be minimum is oL = o, =0@=1,2,..,n)

dg; OA :

Therefore, 2==Lc0 SR L 2c0 20,G=1,2,0n). . (@)
a% 2 ‘II '

and ZZ-3 g -M=0 e

aA gt | | o

These equations give g*, = ﬂ— 6

€q gveq = Cl(._.-) Y *Cf} «{6)

and E;C**w‘ff =M (D)

The second equation implies that g*; must satisfy the investment constraint in
equality sense.

191



Since g*, depends on A* (the optimal value of A), A* can be found by systematic
trial and error. By trying successive positive value of A, the value of A* should result in

simultaneous value of q*i satisfying (7). Thus determination of A* will automatically
determine g",. ' '

The following interesting example will make the procedure clear :

Example : Consider a shop which produces three items. The items are produced
in lots. The demand rate for each item is constant and can be assumed to be deterministic.
No back orders are to be allowed.

The pertinent data for the items is given in the following table :

Item 1 2 3
Holding cost (Rs.) 20 20 20 -
Set-up cost (Rs.) 50 40 60
Cost per unit (Rs.) | 6 7 5
Yearly demand rate 10,000 12,000 . | 7,500

Determine approximately the Economic Order Quantities when the total value of
average inventory levels of_ three items is Rs. 1000.

Solution : First of all we compute the optimal values g*; without considering the
effect of restrication by using the formula (2). Thus, we get

*_J(szOxIOOO) ,_J(zxmxlzoooj .=‘/(2><60><7500)
% 20 )% 20 PV 2

- =100./5 =223 approx. = 40,/3(Q =216 approx. = 150,/ = 210 approx.

Since the average optimal inventory at any time is 1/2 q"f, the investment on average
inventory is obtained as

2C,0(1/2g,") = Rs. (6 223/2 +7 x 216/2 + 5 x 210/2) = Rs. 1950.00.

We observe that the amount Rs. 1950 is greater than the upper limit of Rs.-1000.
Therefore, we try to find the suitable value of A by trial and error method for computing
g*; by using the formula (6).

If we set A =4 in (6) we get
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* 2 x50 x 10000 * 2 x40 x 12000
g = [[ZZ222200 121, gy = | e | = 112,
20+2x4x6 20+2%x4x7

. J(2x60><7500) -
g = || =————|= 113
20+2x%x4x%5

121 _ 112 123

And hence the cost of average inventory = 6 X = +7x X +5x% < =Rs.

1112.50.

Again if we set A = 5 in (6) we obtain g, =111 q,=102, g’y =113, and the
corresponding cost of average inventory is Rs. 972.50 Wthh is less than Rs. 1000.

From this we conclude that the most sultable value of A lles between 4 and 5

To find the most suitable value of A, we draw a graph between cost of average
inventory and the value of A as shown in the following figure :
o . :
1110
c'ols[ of 1000
inventory 970

v

960*

This graph indicates that A =4.7 (approx.) is the most suitable value correspondih g
to which the cost of inventory is approximately Rs. 999.50, which is sufficiently close
to Rs. 1000. ' '

For A = 4.7, we obtain the required optimal values of three items as :
q",=114.4",=105,4"; = 116. .
Model 4(b) : Limitation on inventories '

~ In this case, the upper limit of average number of units in stock is specified asN
(say),, i.e., the average number of units in inventory should not exceed N. Since the
average number of units at any time is 1/2 g;, for i = 1(1)n, we have to minimize the cost
C given by (1) subject to the condition
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1 H ; i
2§qI<N o . (8)

Now two possibilities may arise :

1 n .
Case 1. If Eg.lq*i < N, the optimum value of g;’s are g*(i = 1, 2, ..., n) given
by formula (2)

1n : )
Case2. If _'Eiqf > N, then the optimal values given by (2) are no longer

optimal. So we use Largrange’s multiplier technique.

The Lagrangian function is given by

(i) n )
L= Z[ Gg; + Cq_R'] [124. J

where A > 0 is the Lagrange multiplier.
The optimum values of g, are obtained by setting

; (i) oL 1 »
i ICI(" & R‘+&=0 and—~=—2q, N=0,fori=1,2,.
g 2 g 2 oA
Solving these two equations, we get
._ [[26°R ) .
q C(l} + )\’ ® | = l) 2, ey 12 e (9)
and X', =2N. .. (10)
= v

To obtain the values of g*, from (9) we find the optimal value A* of A by- successive
trial and error method, subject to the condition given by (10).

The following example will illustrate the procedure.

Example : A company producing three items has a llmlted storage space of
averagely 750 items of all types. Determine the optimal production quantities for each
item separately when the following information is given :
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Product - 1 ; 2 2
Holding cost (Rs.) 0.05 .0.02 0.04
Set-up cost (Rs.) 50 40 - 60
Demand rate (per unit) | 100 120 75

Solution : Neglecting the restriction of the total value for inventory level, we find

. 2><50x100 2><40x120 * 2% 60x%x75
11 =\}[ 0.05 ' \( 0.04 ’ a= V( 0.04 )
=100,/20 = 447 (nearly) = 100./48 = 6893 (nearly) = 100,/21.5 = 464
‘nearly). Therefore, the total average inventory is 1/2 (447 + 693 + 464) = 802 units.

But, we are given the storage capacity of 750 items per year and, therefore, we
nave to find the value of parameter A by trial and error substitution process.

For A = 0.002, we get g, =428. ¢, = 628, ", = 444.
Total average inventory becomes
1/, [428 + 628 + 444] = '}'50 units,
which is equivalent to the given amount of average inventory 1.
- Hence, the optimal prodliction quantities for the three items are :
q-, =428 units, q*2 = 628 units, and q-"'3 = 44:4 units.
4(c) : Limitations on floor space (storage space)

In this model, the inventory system includes n(> 1) items which are competing
for a limited storage space. An interaction between the different items occurring due to
this limitation can be included as an additional constraint.

Let A =the maximum storage area available for the n items,

a; = storage area required per unit of the i-th item, and

q,= the amount ordered of the i-th item.

Thus, the storage requirement consiraint becomes :

Zag, <A, q;>0,i=1(1n .. (11)

The relevant inventory costs for each item are the same as in the case of Model 1.
Thus, our problem becomes :

195



' ¢
Minimize, C = E( G g+ : SR } subject to the constraint (11).

The Lagrange mu]tiplicrs method yields the general solution of this problem.

However, before applying this method, it is necessary to check whether the unconstrained

, value of g, given by (2) satisfy the storage constraint. If not, the new optimal values of

g, must be determined which will satisfy the storage constraint in equality sense. This is
done by first formulating the Lagrangian function :

n ) ' (i)
L=‘Z(~‘-c§”,- = R)M[Eam ]
; i=1 2 : qd

where A > 0 is the Lagrange multiplier.

Proceeding as in Model 4(a), we obtain the optimal values

L QC:(:)RE T 9 ‘ 12
qf— Cl(i‘l+2}“*a£ ] I_]-} y weey 1 ‘ ( )

n
and  Zag';=A. : . G 13)

The second equation implies that g”, must satisfy the storage constraint in equality
sense. The dcterminatiop of A* by usual trial and error method automatically yields the
optimum values g”,.

We 1llustratc this model by an example

Example : Consider an inventory problem with three items. The parameters of
the problem are given in the table below. '

Item (i) 7, (units) C,9 (Rs.) C,% (Rs.) a(mi*)

1 20 100 30 1

2 40 50 10 1
3 30 150 ~ 20 1

Assume that the total available storagc area is given by A = 25 mt?. Find the
optimal order quantities.
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Solution : Substituting the given values in (12) we construct the following table:

A q i, q3 2Zag, -
0 11.5 20.0 s 277
5 10.0 14.1 173 16.4

10 9.0 C S 14.9 10.4
15 8.2 10.2 13.4 6.6
20 7.6 89 12.2 3.7
25 71 - 82 I i 1.6
30 6.7 7.6 10.6 ~0.1

We observe that the storage constraint is satisfied for some value of ) between 25
ind 30. From the table we find that the value of A is approximately 30. Hence the
yptimal order quantities are approximately ¢*, =6.7, ¢, =7.6.and ¢", = 11.6.

Model 5 : EOQ model with quantity discounts

When the inventory manager purchases an item he-may be offered a discount on
he purchase price per unit if he buys at least a specified amount of the item. This is
nown as quantity discount. The manager has to decide whether to avail the discount or
1ot on the basis of the cost incurred or profit made.

Consider the EOQ model (Model 1). Let us introduce P as the purchase price per
mit and let us redefine the carrying cost per unit per unit time as a fraction I of the value
f one unit in inventory. -

The yalue of one unit in inventory is defined as the total cost associated with
rocuring one unit. As the cost of procuring g (order quantity) unitsis Cg+ P, the value

+P
B 0r£“-+P.

q . q

f one unit in inventory

C,+F - 1Q¥T+ Fi, i
q 2 2

Hence the total carrying cost over (0, 7) is q;[

Therefore, the total cost over (0, T) is

C(g) = total ordering cost + total purchase cost + total carrying cost
Fi L

2 C. +PD 0T T

q 9 "3
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dCi ;
- Setting @) = 0 we obtain the optimal order quantity as

[2DcC,

PIT
and the minimum cost is

CAT
Clq*) ==~ +PD +JZDC,PIT
Model S(a) : EOQ model with one price-break

ConSIdcr a purchasing sﬂuatwn where only one quantity d1scount is available
Such a situation may be represented as follows :

Purchase price (P) per unit Quantity range

P g<b
P qzb

where P, > P, and b is the quantity beyond which discount is available.

Then the total cost over (0, T) for g < b is
ICT PRI
C(q)-BC +PD =5 °F lzq

and forg = b is

D . IC\T }DZIG'
Cyq) = gCS +P,D+ T+T

2DC,
§i= “pyr 1S the optimal order quantity minimizing C(g). i = 1, 2. Since P :

P, clearly q*l < q*z- The steps for finding the optimal order quantity are as follows :
| Step 1. Compute g°,.If g*, > b, then q*z is the optimal order quantity. [This i
because since P, > P,, C,(q*)) = \[2DC,BIT > \[2DC,BIT = C,(g;)].

If ", < b, go to step 2.
Step2.  Compute ¢°,, C,(g")) and C,(b).

If C'](q*l) < C,(b), then q"I is the optimal order quantity, else g = b is the optime
order quantity. [This follows from the following argument—As C,(g) is a convex functio
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of g and ¢*, < b, over the range [b, ) of ¢, C,(g) is a non-decreasing function of g so that
min C,(q) = C,(b).

- Hence for C,(g",) < C,(b), q", is optimal, and if C,(¢",) > C,(b), g = b s optimal.]
Example : Consider an item on which incremental quantity discounts are available.
The first hundred units cost Rs. 100 each and additional units cost Rs. 95 each. For this
item, demand = 500 units per year, inventory carrying charge =20% of average invén_tory
valuation per annum, and procurement cost = Rs. 50. Determine, the EOQ.
Solution : Given that D = 500 units per year, C; = Rs. 50.00 and I = Rs. 0.20 per
year. Quantity discounts are given below : :

Unit cost Quantity
Rs. 100.00 0<g,<100
“Rs. 95.00 100 < g,

Now ¢'y = || 222 ;\[2x50x500] =100‘/[i) = 51 units.
PI 095%0.20 19

_Since ¢°, < b (= 100), we next compute 4", to have

2(:3 \/2><50x500 o
= 50 units.
BI- 100><0 20

We now compute the costs :

, 500 50 -
C(q") =50 x T~ +500 x 100 +100 x 0.20 x =~ =Rs. 51,000

500 - 100
C(b)=50x =0 + 500 % 95+ 95 x0.20 x 5 = Rs. 48,700.

Since C(b) < C(g*), the optimum order quantity is g* = b = 100 units.
Model 5(b) : EOQ model with two price breaks :
Here we have :
purchase cost (P) per unit =P, if g <b,
=P,ifbj<q<b,
=P;if g2 b,,
: whereP >P, >P and b, < b, <b
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G; (q) denote the total cost over (0, T) when P = P, and q be the con‘espondmg
optimal order quantity, i = 1, 2, 3.

Steps to find optimal order-quantity

Step 1. Compute g*, and compare with b,.

@ Ifq 3 > b,, then the optimum purchase quantity is g s lii)ifa; <5y then
go to step 2.

Step 2. Compare g",. Since g"; < b,, ¢, is also less then b, (because g°; <g", <
q3<..<q ,in general) Thus, there are only two possibilities when g°, < b,, viz.
eltherq ,>b, org" 5 <b,.

(i) Ifg’,< b, but > b,, then proceed as in the case of one price break only That
is, compare the costs Cz(q ,) and C;(D,) to obtain the optimum purchase quantity. The
quantity with lower cost will naturally be the optimum.

(ii) , If g°, < (b, and b, both), then go to step 3.

Step 3.1f ", < (b, and b, both), then find ¢*, which will automatically satisfy the
inequality ¢* , <b,. Compare the cost C (q 1) with Cz(b ) and C,(b,) both to determine
the optimum purchase quantity.

Example : A shopkeeper has a uniform demand of an item at the rate of 50-items
per month. He buys from supplier at a cost of Rs. 6 per item and the cost of ordering is
Rs. 10 each time. If the stock-holding costs are 20% per year of stock value; how
frequently should he replenish his stocks?

Now suppose the supplier offers at 5% discount on orders between 200 and 999
items and a 10% discount on orders exceeding or equal to 1000. Can the shopkeeper
reduce his costs by taking advantage of either of these discounts?

Solution : We are given that : R = 600 items per year, C, = Rs. 10 per order, C, =
Rs. (6 x 0.20) =Rs. 1.20.

g* = 2G,D :J(M] = 100 items.
PI 100x0.20

From this we observe that the shopkeeper must replenish the inventory after every
two months, because 100 items are sufficient to meet the demar_ad of two months only.

The total annual cost includes the fixed cost. set-up cost and stock holding costs.
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In this case, the fixed cost is Rs. 6 x 600 = Rs. 3,600. Also, since each time 100 items
are ordered, there will be six orderin gs throughout the year and hence the replenishment
cost is Rs. 60.00. ; e _
~ But, the average inventory throughout the year is 100/2 = 50 units.
Average inventory carrying cost = 50 x 0.2 x 6 = Rs. 60.00.
Hence the total cost = Rs. 36.00 + Rs. 60 + Rs. 60 = Rs. 3720.00.

In the case of quantity discounts, we have the following formulation :

» Quantity .Unit cost (Rs.)
0<gqg,<200 6.00
0 <g, <1000 _ 5.70 (5% discount) -
1000 < g, 5.40 (10% discount)

Therefore, o * @ 3= 26,0 flie= 20600 ). 110 units.
- . 2 (5.40) x (0.20)
Since ¢"; < b, (= 1000), we next compute g".,.
g = (2SR [[2x10x600 ) _ o Lo
_ BlI (5.70)%(0.20)
Again, since g, (= 200), we next compute q,

« _ [[26D)_ [ 2x10x600 J_momts
T=\ R (6.00) % (0.20) |

Now éompijte,

d 600 100
Clg ) =10 x 100 + 600 x 6 + (0.20) x 6 x ke Rs. 3720.

; 600 - - 200
C(b,) =10 x 200 + 600 x (5.70) + (0.20) x (5.70) x Bl Rs. 3504.

600 1000
C(b,) = 10 x —= + 600 X (5.40) + (0.20) x )5.40) x = Rs. 3786.

100
Since C,(b)) < Cl(q‘*l) < C,(b,), the optimum purchase quantity i$ q* = b, =200 units.
Hence the shopkeeper should accept the offer of 5% discount only, because in
doing so his net saving during the year would be = Rs. 3720 — Rs. 3564 = Rs. 156.
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Model 5(c) : EOQ model with n price breaks
Here the purchase price per unit is given by
Range of quantity : 0<gq,<b, - b <qg,<b, -
Purchase price per unit P : ‘Pl ' P, ¢ B
Let C(q) be the total cost corresponding to P = P,, with optimum purchase quantity
q";, i=1(1)n. Then the following general decision rules apply :

n-1°

1. First, compute g*,. If < q,2b then the optimum purchase quantity is

q*n' i :
2. Ifg,<b,_,, thencompute ¢*, ,.Ifq", , (b, ,<gq", _,<b,_,) then
proceed as in the case of one price break, i.e., the optimum purchase quantity is

determined by comparing C, (¢, _,) with C,(b, _,).

3. Ifg’,<b,_, thencompute ¢*, ,.1fq" _,2b _,, then proceed as in the
case of two price break, i.e., the optimum purchase quantity is determined by comparing
C,_ g, »)withC, _ (b, _,)and C (b, ).

n-32b,_4 thencompare C, _.(q",

4. Ifq’,_,<b,_, thencompute g’ ,.Ifg"
_pwithC, _, (b, _»,C,_(b,_,)and C (b, _)).
5. Continucis thisway untilg",_,2b, .., [0<i<n-1], and then compare
C,_{q",_,) with |
Crcin1Bnzids G iy 1) Gy i3y 0)s s ClBy, ).
This procedure will involve a finite number of steps, in fact at the most n, where
n denotes the number of price ranges.
Example : Determine an optimal ordering rule for the following case : D = 6,000
units in one month, C; = Rs. 50 per order / = 0.02 per month, where
P =Rs.1.25 for- 0<g,<100
P,=Rs. 120  for 100 < ¢, <300
P,=Rs. 1.00  for 5000 < g, < 1,000
P;=Rs.0.95 for 1000 < g5 < 2,000
P,=Rs.090 for  gb>2,000.

Solution : Since
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¢ _ [[2GD) _ [[2%50%6000 ) 10,000 _ .00 inits (approx.)
6%\ Ip, 0200x(090)) 3 i

whi.ch is greater than b, (= 2,000), the optimal order quantity is qr“6 = 5780 units.

Model 6 : Dynamic demand inventory model

So far we have discussed inventory models in which the demand is uniform. But,
in actual practice, we come across non-uniform demand such as having rising or falling
trend and/or depicting the seasonal influences.

According to M. Kemer, the following proccdure' is adopted for scheduling of
known but irregular batchwise demand.

Procedure : For each month n (starting with n = 1), the condition n°R,_, | < (Cy/
IP) is checked, where R, _ , is the requirement for the next month, C, is the setup cost,
and IP is the inventory carrying cost.

So long as the condition is satisfied (i.e., answer is “Yes’) n is increased by 1 to
take the next month into co_nsideration. Bit, as soon as the above condition is not satisfied
(i.e., answer is ‘No’), there is an end of the particular grouping, and the following
month is taken as a new month 1 to proceed further in a like manner.

The followin g example will make the procedure clear.

Example : The mo;mthly requirement schedule for a product is given below :
Month 1 -2 3 4 5 6 7 8 9 10 1 12
Requirement 100 150 10 70 90 180 2 98 100 200 140 160

Unit price (P) =Rs. 15, set-up cost (C,) = Rs. 150; and inventory carrying cost is
30% of the annual average inventory value. ' i
Determine an optimum plan of setups and batch sizes.
- Solution : We are given that C, = Rs. 150, C = Rs. 15, and I = 30% of annual
average inventory value = 0.32/12 = 0.025 monthly. '

Hence & g 1.5_.0_._ = 400.
IP 0.025 x 15
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The working procedure may be tabulated as follows :

Month Requirement | n | n?R"*! | Isn?R"*! <4007 Action
1 100 | 150 Yes I set-up
2 150 2 40 No I set-up
3 10 3 630 Yes I set-up
Size of I set-up Total = 260 Set-up again in month 4
4 70 1 % Yes Il set-up -
5 90 . 720 No I set-up
Size of Il set-up | "Total = 160 Set-up again in month 6
0 180 | 2 Yes 11 set-up
7 2 2 [ 392 Yes 111 set-up
8 98 3 900 No 111 set-up
| Size of Il set-up | Total =280 Set-up again in month 9
9 00 | 1| 200 Yes IV set-up
10 200 2 560 No IV set-up
Size of IV set-up | Total =300 Set-up again in month 11
11 140 160 Yes V set-up
12 160 2 - - V set-up

‘There are five setups with respective sizes of 260, 160, 280, 300, .300' The 1as§ :

setup could possibly take up some of the next years requirements.

I1. Probabilistic Inventory Models

A probabilistic or risk inventory model is a mode] in which demand is a random
‘variable following some probabilistic law.

Model 7 : Static risk model with no lead time .

This is a one-period model where only one order is placed during the period. A
typical example of this model is the newsboy problem. The problem is as follows :

A newspaper vendor starts his day with Q newspapers in hand. The demand for
the newspaper during the day is known to be random. So at the end of the day the
vendor may find some excess newspapers in hand or may be facing a shortage.
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Accordingly, he incurs.excess cost or shortage cost. His problem is, therefore, to find Q
so as to minimize his total expected cost.
Let Q = order quantity, order being placed at the beginning of the period

C, =excess cost per unit quantity of item in excess
C, = = shortage cost per unit quantity of item short
D = demand during the period with cumulative distribution function
F(d),d=0.
The cost incurred is
C(Q-d)ifd<Q

and C,d-Q)ifd>Q.
| Let C(Q) denote the total expected cost.
Case 1. D is a discrete random variable with p.m.f. f{d), d > 0. In this case

CQ@=C, )%(Q dfid) + C, (a’ Ofd).

d= Q+l
The optimal value of Q which minimizes C(Q) must satisfy
CQ)=C@+1) - - (1)
and C(Q)<C(Q-1) . . (2

Now,
c@+1-00 =¢,{$0+1-as@- §0-ara}+

cz{ 5 (d-0-Df()- §(Q_—d)f(d)}
d=0+2 d=0

- [0+l R
=C, {z Q+1-d)f(d)- 3 (Q—d)f(d)} 3
d=0 d=0
of £ a-0-vra- £ @-ora

=C,F(Q) - C,{1-FQ)}

From (1) we have
(Cy + CGF(Q) 2 C,.
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or, F(Q)2 C+ Cz v k)
Similarly, (2) gives
F(O-1)< C,+C,_ . (4)

Thus, optimal Q must satisfy

FO-1)2 s

C+G, F(Q),

ie. optlmal Q is the smallest Q satisfying F(Q) 2
G+ Cz

Case 2. D is an absolutely continuous random variable with p.d.f. id), d 2 0.
Here

Q o
Q) =¢, [(©-afid+c, | d-0 faad

d
. The optimal value of Q satisfies 40 =)y ="0; whjch gives, after some

simplification,
- G
G +GC,

F(Q) =

Example (Newspaper—B_oy Problem) :

A newspaper-boy buys papers for Rs. 2.60 each and sells them for Rs. 3.60 each.
He cannot return unsold newspapers. Daily demand has the following distribution :

No. of customers (d) : 2 24 25 26 27 28 29 30 31 R
Probability P(d) : o 03 06 0 20 25 A5 0 05 .05

_ If each day’s demand is independent of the prevmus day’s demand, how many
papers should he order each day?

Solution : Letting C| = excess cost/paper, C, = shortage cost/paper, the optimal

order quantity Q is the smallest Q satisfying

opt

Z >
d= 23p(d) G +C2
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Since the planning period is of infinite length we analyze the model considering
the cost over a reorder interval.

As demand X'is arandom vari able we may have one of the followmg situations
in a reorder interval as indicated in the figures below—

S-x \lv

Fig. 1 . Fig.2 -
We note that in figure 1 only carrying cost is incurred, while in figure 2 both

carrying and shortage costs occur.
Assuming mean demand rate to be constant,

. +
average inventory = itz forx<S.

_

—forx>S

2
and average shortage =0forx<$§

- forx>S..

Hence, the total cost over (o, ) is given by

c; (s+ )nfx<s
2

S
and C, <t +C(

12 S)(:-:O) ifx>S.

' %
ie, C (S'*"z‘)t ifx<$§

$2 ! =B
| 'E_t - C2 2%

and C tif x> 8,
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But, C, =Rs. 2.60,and C, = = Rs. 3.60—Rs. 2.60 = Rs. 1.00.

Hence 2 P(d) > which glves 0.

360

Example : A baking company sells cake by the kg. weight. It makes a profit of
Rs. 5.00 a kg. on each kg. sold on the day it is baked. It disposes of all cake not sold on
the date it is baked at a loss of Rs. 1.20 a kg. If demand is known to be rectangular
between 2000 and 3000 kg., determine the optimal daily amount baked.

Solution : We know that the optimal value of Q, the dally amount baked, is the
smallest Q satisfying

o (1)

where
C, = excess cost/Kg. = Rs. 1.20, C, = shortage cost/Kg = Rs. 5.00,

1
Ax) = 1000 ° 2000 < x < 3000.

Substituting these values in (1) we get

s
= C = p(x), 8|01 0=x<10
G+RI[S+=]|Y —=2 = —dx= :
[( I {I(S ) ?S 10+C, _§+1 x IOH{ 0 otherwise
which gives Q0 = 2807 kg.

Model 8. Dynamic risk model with no lead time

Consider an inventory model with a planning period of infinite length, which is
divided into reorder intervals of length 7 time units, ¢ being known. Demand during
each reorder interval is known to be a random variable X with c.d.f. F(x), x20.Itis
assumed that replenishment is instantaneous on ordering.

The inventory policy is to place an order at the beginning of each reorder interval
so as to bring the stock height instantaneously to S. Any shortage during a reorder
interval is backlogged.

The inventory manager; therefore, has to decide upon the value df S.
Suppose the following costs are given :
C, = carrying cost per unit per unit time
C, = shortage cost per unit short per unit time ‘
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. =3 o
since — = , which gives
_ S
.fo = ; t.

Case 1. X is a discrete random variable with p.m.f. fx), x> 0.

_ In this case,

5 /0,6 5 687

2 x-S+I X 2 x=S4 X

C(S)=C, Z(S+ )f( )+C1

The optimal value of S, which minimizes C(S), satisfies
CS=<CES+1) s kL)
and C(S)<C(S-1) siba)

x=5+1 X

: o o
Now, C(S+1)—C(S)=;[(C,fC2)+{F(S)+(S+E] ¥ M}—Cz],

so that (1) reduces to
F(S)+[S+ ) [, G . .. ).

2)x=8+41 X CI +C,

Similarly, from (2) we get

1
FS-1)+ (S-EJ

Thus, optimal value of S must simultaneously satisfy (3) and (4).
‘Case 2. X is an absolutely continuous random variable with p.d.f. f{x), x20. Here

{x- S)

Ef(x)< G . ' @

x=s x G+C,

C(S) = c:I(S+ )j(x)dx+C —4 ~ fxydx + CZJ fx)dx.

C(S) w111, therefore, be minimum for a value of S satisfying d%dgg) = 0, which

gives

chic, I N
F(S)+S£ . dx—q_'_cz «:5)

Thus, optimal value of S satisfies (5).
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Example : Let the probability density of demand of a certain item during a week
be

0.1 0<x<10
fix) = 0 otherwise

This demand is assumed to occur with a uniform pattern over the week. Let the
unit carrying cost of the item in inventory be Rs. 2.00 per week and unit shortage cost
be Rs. 8.00 per week. How will you determine the optimal order level of the inventory?

Solution : Since fx) = 0.1, 0 < x < 10, C, = Rs. 2.00, C, = Rs. 8.0, then if S
denotes the maximum stock height, optimal § satisfies
S 10
0.1
7021600 (i e
o L X 10 _
or, 0.1(S-SlogS+235)=0.8,0r,335-SlogS-8=0.

S

The solution of this equation is obtained by trail and error method which gives §
=4.5.

Example : The probability distribution of monthly sales of a certain item is as
_follows : =L .

Monthly sales : 0 01 2 -, 3 4 5 6
Probability : 002 005 030 027 020 010 006

The cost of carrying inventory is Rs. 10.00 per unit per month. The current policy
is to maintain a stock of four items at the begining of each month. Assuming that the
cost of shortage is proporti'onal to both time and quantity short, obtain the imputed cost
of a shortage of one item for one time unit. (Because the problem is stated in discrete
units, the answer will consist of a range of values for the imput cost).

Solution : (1) Optimum stock height S = 4 items,

(2) carrying cost C, = Rs. 10.00 per item per month;

(3) the probability p(x) for sale x in each month is as follows :_
pO p1) - p@ - pB  .p@  p(5)  p6)
02 005 030 027 020 010 006
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(4) the shortage cost C, is to be determi ned,

(5) the range of monthly sales x is given from 0 to 6 times in discrete units (not

from 0 to e here). _
We khow that optimal S must satisfy

5~1
2 p) +(S-112) E Py G P@+(S+112) 2 P
x . CG+Gyx=0 S+ X
Now lcast value of C, can be determined by letting
- p(x)
105G, }3 P +(s-19) T2
Therefore, substituting the given values, we get
D..-23 5 p(x)
QQ+C{2 Ep(x) +@-12 =
p4)  pG)_ p©
=[p0) +p(1) +p2) +p)] + 5 [ ]
4 5 6
77020 0.10 0.06]
=(0.02 +0.05 +0.03 +0.2_7]+5[ 1 + 5 + 6 ]:G.QQ.

Least value of C2 =9.2/.08 =Rs. 1_15.

Similarly, the greatest value of C, can be determined by letting

G J s P(x)
= S+112) ¥ —=
GG e LS

Substituting the given values, we get

a 1 Z p( )
T Cz _Eo p(x) + (4 +- /2)

=0.84 + 9/2 x 0.03 = 0.975.
Greatest value of C, = 9.75/0.25 = Rs. 390.
Hence, the required range of values for the imputed cost C, is
Rs. 115 <C, <Rs. 390.

Model 9. Dynamic risk inventory models with lead time
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Dynamic risk models with lead time may be classified into two broad classes viz.
(i) fixed-order quantity system or Q system, and (ii) fixed reorder period system or P
system. ' o ‘

Model 9(a) Q-system : The Q system is a continuous review model. Here the
pollcy is to place an order for Q units whenever the stock on hand reaches a minimum
level r, say, called the reorder level. The ordered quantity isreceived at the end of the
lead time period (L).

Since demand is probabilistic in nature, there exists the possibility of facing a
shortage during the lead time. In order to reduce the chance of shortage, a safety stock
w, also known as buffer stock or reserve stock, is maintained. The safety stock w is the
the difference between the reorder level r and the expected lead time demand (d 1), e,

w=r—d,orr=d, +w.

(If L be a random variable, d, is the expected demand over average lead time)

The model is also referred to as the (S, s) system, where S denotes the maximum
stock height and s the reorder level.

Let (O, T) be the planning period and D be the expected demand over (O, T). Let
Y be the demand over the lead time (or average lead time). Let ¥ be a random variable
with c.d.f. F(y),y=0.

Let C, = ordering cost per order
C, = carrying cost per unit quantity per unit time
C, = shortage cost per unit short per unit time.
Then, '

D
total order cost over (O, T) = E Cs.

The total carrying cost for normal stock is C, % T. However, we face an additional

carrying cost for maintaining a safety stock against possible shortage, and this is given
by C,(r-d,)T = C,wT. Hence, total carrying cost over (O, T) is

G fT-l-CWT

As shortage occurs during a lead time periodif r< ¥, i.e., d,+w<Y,and thex'-e"z’x're
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in all = lead time periods in the planning horizon, the total shortage cost will be

0

CS""Q E (y—dLl-w)f(y)dy.

Qd L+w

Hence, the total cost over (0, T) is .

oo

D 0 D S ;
E.CS +C; —2“T+ CwT+ C3é;£+w@ —d, — w)dF(y)dy.

The deci;ion variables are Q and w, which are assumed to be independent. A
good approximation of the order quantity Q is given by the EOQ formula of Model 1.
Using this value of g, the optimal value of w which minimizes the total cost can be

obtained.

Example : A certain item has an annual demand of 2000 units. The cost of placing
an order is Rs. 400 and the annual carrying cost is Rs. 10 per unit. The costs of stockout
are estimated to average Rs. 10. The demand during lead time tends to be randomly
distributed throughout the year, so that a Poisson distribution may be assumed. The are
250 working days per year and lead time is 5 working days.

Demand during lead time (d:70 75 80 85 90 95 - 100

Probability p(d) : 0.02 0.14 - 0.23 024, 021 0120 .04

. Determine the optimal order quantity and reorder level.

Solution : We are given that

D  =2000 units/year, C;=Rs. 400/order

C, =Rs 10 per ynit/per year, C, = Rs. 10 per unit, and lead time (L) =5
days. The optimal value of order quantity cand be obtained as :

o* 20 =Jw = 400 units.s
G 10

The expected number of units demanded (denoted by d,) during the lead time is
given by - ' S
d, =dpd)+dpd,)+dp(dsy)+dp(d)+dp(ds) + dgp(dg + dp(d,)
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= (70 x .02) + (75 x .14) + (80 x .23) + (85 x .24) + (90 x .21) +
. (95 x .12) x (100 x .04)
= 85 expected units.

If the safety stock is not provided, then shortages will occur whenever the demand
during lead time exceed 85 units. The expected number of units short per lead time is
computed in the following table.

Reorder Satety Lead time Shortages Prob.of | (d-rp(d) | Expected
_level stock level |  demand during lead | demand units short
(r (w) (d) time(d-r) | duringL _ per lead time
. [p(d)] X(d - r) p(d)
85 0 85 0 0.24 0 2.85
90 5 0.21 1.05
95 10 0.12 1.20
- - 100 | 15 0.04 0.50
90 5 90 .0 0.21 0 1.0
95 5 - 0.12 0.6
: - 100 10 0.04 0.4 :
95 10 05 0 0.12 0 0.2
. 100 5 0.04 0.2
100 15 100 0 0.04 0 0

From above table it may be observed that.whenever there is no safety stock, the
expected number of units short per lead time is 2.85. But, when the buffer stock of 5,
10, and 15 units is provided, the expected shortage is 1.0, 0.2 and 0, respectively.

The annual carrying costs due to safety stock is 0, 50, 100.and 150 at the rate of
Rs. 10 per unit for safety stock ranging from 0 to 15 units: These costs and the cxpccted
annual shortage cost is computed as given in the followmg table :

Safety Expected Perunit | Reorder cycle Expected zmnual
stack level shortage per - shortage cost per year- - shortage cost
(w) lead time (., (DRQ¥) = | C(DIQ¥)E(d - r)p(d)
3(d - rp(d) | I
0 2.85 10 5 142.5
1.00 - 10 5 50.0
0.20 10 5, 10.0
15 0 10 5 -0
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The carrying costs of various safety stock levels and expected annual shortage
cost are combined together in the following table to show the inventory trade-off between

the two.

Safety Safety stock Expected Total annual
stock level carrying cost annual expected cost
: shortage cost
0 142.5 142.5
5 50 50.0 100.0
10 100 10.0 110.0
15 - 150 0 150.0

From this table we observe that total annual expected cost reaches a minimum
level at the safety stock level of 5 units. Hence, optimal reorder level, r=w+d; =5 +
85 =90 units. '

Model 9(b) : P system. In the P system the policy is to place an order at each of
the reorder time points 0, ¢, 2¢, ..... on the planning period, the order quantity being just
sufficient to bring the stock to a maximum level S, say. Since demand is probabilistic in
nature, the stock height at a reorder point will be a random variable so that the order
quantity will also be random. Further, to reduce the chance of facing a shortage during
a combined lead time (L) and reorder interval (¢), a safety stock w is maintained. The
safety stock is the difference between S and the sum of expected demand (d,) during a
lead time and the expected demand (d,) during a reorder interval, i.e.,

w  =S-(d+d)
or, 5 =d, +d; +w.
_ (Here also, if L be raﬁdom, d, denotes the expected demand over average lead
time.) _
Let (O, T) be the ﬁ]arming period, and Y denote the demand during a combined

reorder interval and lead time (or average lead time) period, which is a random variable
with c.d.f. F(y), y=20.

Let the costs be
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C; = ordering cost per order
C, =carrying cost per unit quantity per unit time

C.

, ~ = shortage cost per unit short per unit time.

The decision variables are {z, w) which are to be determined so as to minimize the
total cost over (O, T). For simplicity sake, we assume ¢ and w to be independent.

An approximation to ¢ is obtained by applying the EOQ formula in Model 1. This
value of ¢ is used in the cost expression to find the optimum value of w. We may, therefore,
consider only that part of total cost which is affected by w. This cost is given by

C(w) =total carrying cost of w over (O, T) + total shortage cost over (0, T)

=CwT + Cz?dw”w(y d,—d, —w)dF(y)

: ; t
since there are in all T lead time + reorder interval in the planning horizon.

Here the argument is that on an average the safety stock w is carried unused over
the entire planning period so that the carrying cost for this stock is C 1wi".'
However, in reality a part or whole of the safety stock may be consumed if ¥>d,
+d, . As such, the cost expression would be
di+dp +w

| ¥
C(w):C[-;_- S @ +d+w-ydFO)+Cy Y (y—d, = w)dF(y)

b d+Dp+w
Advantages of Inventory Control
The main advantages of inventory control are :

1.  Inventory control ensures an adequate supply of items to customers and
avoids shortages as far as possible at the minimum cost.

2. It makes use of available capital (and /or storage space) in a most effective
way and avoids an unnecessary expenditure on high inventory etc.

3. The risk of loss due to change-in prices of items is reduced.

It ensures a smooth and efficient running of the organization.
It provides advantages of quality discounts on bulk purchases.
It serves as a buffer stock required due to delay in supply.

Sy 1O A

It eliminates the possibility of duplicate ordering.
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8. It helps to minimize the loss due to deterioration, obsolescence, damages
or pilferage, etc. ' '

9. It helps in maintaining the economy by absorbing some of the fluctuations
when the demand for an item fluctuates or is seasonal.

10. It minimizes and controls accumulation and build-up of surplus stock, and
removes the dead movable surplus stock as far as possible.

11. It utilizes benefits of price fluctuations.

Thus, it may be concluded that with the help of a good inventory, a firm is able to
make purchases in economic lots, to maintain continuity of operations, to avoid small
time consuming orders and to guarantee prompt delivery of finished goods.

8.6 Questions

1. A particular item has an annual demand of 900 units. The carrying cost is

Rs. 2 per unit per year and the ordering cost is Rs. 90 per order. Find
(i)  the economic order quantity, and (ii) the number of orders to be placed
per annum.

If the purchase price per unit is Re. 0.50, what is the total cost per year?

2. A certain product has demand of 25 units per month and the items are
withdrawn uniformly. Each time a production run is made the setup cost is Rs. 15. The
production cost is Re. 1 per item and inventory carryi‘ng cost is Re. 0.30 per item pr
month. 2 .

(i) Assuming shortages are not allowed, determine how often to make a
production run and what size it should be. :

(ii) If shortage cost is Rs. 1.50 per item short per month, detetmine how
often to make a production run and what size it should be.

3. - Consider a shop which produces and stocks three items. The management
desires never to have an investment in inventory of more than Rs. 15000. The iems are
produced in lots. The demand rate for each item is constant and can be assumed to be
deterministic. No backorders are allowed. The pertinent data for the items are given in
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the table below. The carrying cost on each item is 20% of average inventory valuatior{
per annum. Determine the optimal lot size for each item. -

Item 1 2 3
Demand rate (units per year) 1000 . 500 2000
Variable cost (Rs. per unit) 20 100 50
Set-up cost per lot (Rs.) . 50 75 100

4.  Demand for a particular item is 2000 units per year. Unit cost is Rs. 5,
Carrying cost is 12 percent per year and ordering cost is Rs. 10. Find the economid
order quantity. If a one percent discount is offered if the ordered quantity is between|
600 and 1000, should it be taken? What will the EOQ be in this case?

5.  Anice-cream company sells one of its types by weight. If the product is not,
sold on the day it is prepared, it can be sold at a loss of 50 paise per Kg. But there is an
unlimited market for one day old ice-cream. On the other hand, the company makes a
profit of Rs. 3.20 on every Kg. of ice-cream sold on the day it is prepared. Past daily
orders form a distribution with f{x) = 0.02 — 0.002x, 0 < x < 100. How many Kg. of ice-
cream should the company prepare everyday?

6.  Demand for a particular product is probabilistic and is as follows :
' " 5 : 0 | 2 3 4
px) : 0.01 020 039 020 . 020

The cost of prochicin g one unit is Rs. 5000 per unit, the carrying cost per unit per|
'year is Rs. 500 and the shorage cost per unit short per year is Rs. 1500. Find the optimal
production level.
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